મૂલ્યાંકન કરો
\frac{25-15\sqrt{3}}{2}\approx -0.490381057
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right)}
\frac{5}{-5-3\sqrt{3}} ના અંશને -5+3\sqrt{3} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
\left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\sqrt{3}\right)^{2}}
2 ના -5 ની ગણના કરો અને 25 મેળવો.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-3\sqrt{3}\right)^{2} ને વિસ્તૃત કરો.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\left(\sqrt{3}\right)^{2}}
2 ના -3 ની ગણના કરો અને 9 મેળવો.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\times 3}
\sqrt{3} નો વર્ગ 3 છે.
\frac{5\left(-5+3\sqrt{3}\right)}{25-27}
27 મેળવવા માટે 9 સાથે 3 નો ગુણાકાર કરો.
\frac{5\left(-5+3\sqrt{3}\right)}{-2}
-2 મેળવવા માટે 25 માંથી 27 ને ઘટાડો.
\frac{-25+15\sqrt{3}}{-2}
5 સાથે -5+3\sqrt{3} નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}