x માટે ઉકેલો
x=2
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\left(x+3\right)\times 4=25+\left(x-3\right)\left(x+3\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -3,3 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(x-3\right)\left(x+3\right) દ્વારા ગુણાકાર કરો, x-3,x^{2}-9 ના સૌથી ઓછા સામાન્ય ભાજક.
4x+12=25+\left(x-3\right)\left(x+3\right)
x+3 સાથે 4 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x+12=25+x^{2}-9
\left(x-3\right)\left(x+3\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. વર્ગ 3.
4x+12=16+x^{2}
16 મેળવવા માટે 25 માંથી 9 ને ઘટાડો.
4x+12-16=x^{2}
બન્ને બાજુથી 16 ઘટાડો.
4x-4=x^{2}
-4 મેળવવા માટે 12 માંથી 16 ને ઘટાડો.
4x-4-x^{2}=0
બન્ને બાજુથી x^{2} ઘટાડો.
-x^{2}+4x-4=0
તેને માનક ફૉર્મમાં મૂકવા માટે બહુપદી ફરી ગોઠવો. પદોને સૌથી વધુથી સૌથી ઓછા ઘાત ક્રમમાં ગોઠવો.
a+b=4 ab=-\left(-4\right)=4
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની -x^{2}+ax+bx-4 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,4 2,2
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 4 આપે છે.
1+4=5 2+2=4
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=2 b=2
સમાધાન એ જોડી છે જે સરવાળો 4 આપે છે.
\left(-x^{2}+2x\right)+\left(2x-4\right)
-x^{2}+4x-4 ને \left(-x^{2}+2x\right)+\left(2x-4\right) તરીકે ફરીથી લખો.
-x\left(x-2\right)+2\left(x-2\right)
પ્રથમ સમૂહમાં -x અને બીજા સમૂહમાં 2 ના અવયવ પાડો.
\left(x-2\right)\left(-x+2\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-2 ના અવયવ પાડો.
x=2 x=2
સમીકરણનો ઉકેલ શોધવા માટે, x-2=0 અને -x+2=0 ઉકેલો.
\left(x+3\right)\times 4=25+\left(x-3\right)\left(x+3\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -3,3 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(x-3\right)\left(x+3\right) દ્વારા ગુણાકાર કરો, x-3,x^{2}-9 ના સૌથી ઓછા સામાન્ય ભાજક.
4x+12=25+\left(x-3\right)\left(x+3\right)
x+3 સાથે 4 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x+12=25+x^{2}-9
\left(x-3\right)\left(x+3\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. વર્ગ 3.
4x+12=16+x^{2}
16 મેળવવા માટે 25 માંથી 9 ને ઘટાડો.
4x+12-16=x^{2}
બન્ને બાજુથી 16 ઘટાડો.
4x-4=x^{2}
-4 મેળવવા માટે 12 માંથી 16 ને ઘટાડો.
4x-4-x^{2}=0
બન્ને બાજુથી x^{2} ઘટાડો.
-x^{2}+4x-4=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -1 ને, b માટે 4 ને, અને c માટે -4 ને બદલીને મૂકો.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
વર્ગ 4.
x=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
-1 ને -4 વાર ગુણાકાર કરો.
x=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
-4 ને 4 વાર ગુણાકાર કરો.
x=\frac{-4±\sqrt{0}}{2\left(-1\right)}
-16 માં 16 ઍડ કરો.
x=-\frac{4}{2\left(-1\right)}
0 નો વર્ગ મૂળ લો.
x=-\frac{4}{-2}
-1 ને 2 વાર ગુણાકાર કરો.
x=2
-4 નો -2 થી ભાગાકાર કરો.
\left(x+3\right)\times 4=25+\left(x-3\right)\left(x+3\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -3,3 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(x-3\right)\left(x+3\right) દ્વારા ગુણાકાર કરો, x-3,x^{2}-9 ના સૌથી ઓછા સામાન્ય ભાજક.
4x+12=25+\left(x-3\right)\left(x+3\right)
x+3 સાથે 4 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x+12=25+x^{2}-9
\left(x-3\right)\left(x+3\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. વર્ગ 3.
4x+12=16+x^{2}
16 મેળવવા માટે 25 માંથી 9 ને ઘટાડો.
4x+12-x^{2}=16
બન્ને બાજુથી x^{2} ઘટાડો.
4x-x^{2}=16-12
બન્ને બાજુથી 12 ઘટાડો.
4x-x^{2}=4
4 મેળવવા માટે 16 માંથી 12 ને ઘટાડો.
-x^{2}+4x=4
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{4}{-1}
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x^{2}+\frac{4}{-1}x=\frac{4}{-1}
-1 થી ભાગાકાર કરવાથી -1 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-4x=\frac{4}{-1}
4 નો -1 થી ભાગાકાર કરો.
x^{2}-4x=-4
4 નો -1 થી ભાગાકાર કરો.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-4, x પદના ગુણાંકને, -2 મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -2 ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-4x+4=-4+4
વર્ગ -2.
x^{2}-4x+4=0
4 માં -4 ઍડ કરો.
\left(x-2\right)^{2}=0
અવયવ x^{2}-4x+4. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-2=0 x-2=0
સરળ બનાવો.
x=2 x=2
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
x=2
સમીકરણ હવે ઉકેલાઈ ગયું છે. ઉકેલો સમાન જ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}