મૂલ્યાંકન કરો
\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)}
w.r.t.r ભેદ પાડો
-\frac{260r^{2}+140r+407}{\left(\left(5r-2\right)\left(2r+5\right)\right)^{2}}
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. 2r+5 અને 5r-2 નો લઘુત્તમ સામાન્ય ગુણાંક \left(5r-2\right)\left(2r+5\right) છે. \frac{5r-2}{5r-2} ને \frac{4}{2r+5} વાર ગુણાકાર કરો. \frac{2r+5}{2r+5} ને \frac{3}{5r-2} વાર ગુણાકાર કરો.
\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
કારણ કે \frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} અને \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)}
4\left(5r-2\right)+3\left(2r+5\right) માં ગુણાકાર કરો.
\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)}
20r-8+6r+15 માં સમાન પદોને સંયોજિત કરો.
\frac{26r+7}{10r^{2}+21r-10}
\left(5r-2\right)\left(2r+5\right) ને વિસ્તૃત કરો.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. 2r+5 અને 5r-2 નો લઘુત્તમ સામાન્ય ગુણાંક \left(5r-2\right)\left(2r+5\right) છે. \frac{5r-2}{5r-2} ને \frac{4}{2r+5} વાર ગુણાકાર કરો. \frac{2r+5}{2r+5} ને \frac{3}{5r-2} વાર ગુણાકાર કરો.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
કારણ કે \frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} અને \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)})
4\left(5r-2\right)+3\left(2r+5\right) માં ગુણાકાર કરો.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)})
20r-8+6r+15 માં સમાન પદોને સંયોજિત કરો.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+25r-4r-10})
5r-2 ના પ્રત્યેક પદનો 2r+5 ના પ્રત્યેક પદ દ્વારા ગુણોત્તર કરીને વિતરણના ગુણધર્મ લાગુ કરો.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+21r-10})
21r ને મેળવવા માટે 25r અને -4r ને એકસાથે કરો.
\frac{\left(10r^{2}+21r^{1}-10\right)\frac{\mathrm{d}}{\mathrm{d}r}(26r^{1}+7)-\left(26r^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}r}(10r^{2}+21r^{1}-10)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
કોઈપણ બે ભેદકારક ફંક્શન્સ માટે, છેદ ગુણા ગણકનાં વ્યુત્પન્નમાંથી બકાત કરેલ અંશ ગુણા છેદનું વ્યુત્પન્ન, બધાનું વર્ગ કરેલા છેદથી ભાગો, તે બે ફંક્શન્સના ભાગફળનું વ્યુત્પન્ન છે.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{1-1}-\left(26r^{1}+7\right)\left(2\times 10r^{2-1}+21r^{1-1}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
બહુપદીનું વ્યુત્પન્ન એ એના પદોના વ્યુત્પન્નનો સરવાળો છે. કોઈ અચલ પદનું વ્યુત્પન્ન 0 છે. ax^{n} નું વ્યુત્પન્ન nax^{n-1} છે.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
સરળ બનાવો.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
26r^{0} ને 10r^{2}+21r^{1}-10 વાર ગુણાકાર કરો.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}\times 20r^{1}+26r^{1}\times 21r^{0}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
20r^{1}+21r^{0} ને 26r^{1}+7 વાર ગુણાકાર કરો.
\frac{10\times 26r^{2}+21\times 26r^{1}-10\times 26r^{0}-\left(26\times 20r^{1+1}+26\times 21r^{1}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
સમાન આધારના ઘાતનો ગુણાકાર કરવા, તેમના ઘાતાંકો ઉમેરો.
\frac{260r^{2}+546r^{1}-260r^{0}-\left(520r^{2}+546r^{1}+140r^{1}+147r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
સરળ બનાવો.
\frac{-260r^{2}-140r^{1}-407r^{0}}{\left(10r^{2}+21r^{1}-10\right)^{2}}
સમાન પદોને સંયુક્ત કરો.
\frac{-260r^{2}-140r-407r^{0}}{\left(10r^{2}+21r-10\right)^{2}}
કોઈ પણ શબ્દ t, t^{1}=t માટે.
\frac{-260r^{2}-140r-407}{\left(10r^{2}+21r-10\right)^{2}}
0, t^{0}=1 સિવાય કોઇ પણ શબ્દ t માટે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}