મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -1,1 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(x-1\right)\left(x+1\right) દ્વારા ગુણાકાર કરો, x+1,x-1 ના સૌથી ઓછા સામાન્ય ભાજક.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
x-1 નો 2x-3 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
x+1 નો 2x-5 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
4x^{2} ને મેળવવા માટે 2x^{2} અને 2x^{2} ને એકસાથે કરો.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
-8x ને મેળવવા માટે -5x અને -3x ને એકસાથે કરો.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
-2 મેળવવા માટે 3 માંથી 5 ને ઘટાડો.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
2 સાથે x-1 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x^{2}-8x-2=2x^{2}-2
2x-2 નો x+1 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x^{2}-8x-2-2x^{2}=-2
બન્ને બાજુથી 2x^{2} ઘટાડો.
2x^{2}-8x-2=-2
2x^{2} ને મેળવવા માટે 4x^{2} અને -2x^{2} ને એકસાથે કરો.
2x^{2}-8x-2+2=0
બંને સાઇડ્સ માટે 2 ઍડ કરો.
2x^{2}-8x=0
0મેળવવા માટે -2 અને 2 ને ઍડ કરો.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે -8 ને, અને c માટે 0 ને બદલીને મૂકો.
x=\frac{-\left(-8\right)±8}{2\times 2}
\left(-8\right)^{2} નો વર્ગ મૂળ લો.
x=\frac{8±8}{2\times 2}
-8 નો વિરોધી 8 છે.
x=\frac{8±8}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{16}{4}
હવે x=\frac{8±8}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 8 માં 8 ઍડ કરો.
x=4
16 નો 4 થી ભાગાકાર કરો.
x=\frac{0}{4}
હવે x=\frac{8±8}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 8 માંથી 8 ને ઘટાડો.
x=0
0 નો 4 થી ભાગાકાર કરો.
x=4 x=0
સમીકરણ હવે ઉકેલાઈ ગયું છે.
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -1,1 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(x-1\right)\left(x+1\right) દ્વારા ગુણાકાર કરો, x+1,x-1 ના સૌથી ઓછા સામાન્ય ભાજક.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
x-1 નો 2x-3 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
x+1 નો 2x-5 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
4x^{2} ને મેળવવા માટે 2x^{2} અને 2x^{2} ને એકસાથે કરો.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
-8x ને મેળવવા માટે -5x અને -3x ને એકસાથે કરો.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
-2 મેળવવા માટે 3 માંથી 5 ને ઘટાડો.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
2 સાથે x-1 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x^{2}-8x-2=2x^{2}-2
2x-2 નો x+1 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
4x^{2}-8x-2-2x^{2}=-2
બન્ને બાજુથી 2x^{2} ઘટાડો.
2x^{2}-8x-2=-2
2x^{2} ને મેળવવા માટે 4x^{2} અને -2x^{2} ને એકસાથે કરો.
2x^{2}-8x=-2+2
બંને સાઇડ્સ માટે 2 ઍડ કરો.
2x^{2}-8x=0
0મેળવવા માટે -2 અને 2 ને ઍડ કરો.
\frac{2x^{2}-8x}{2}=\frac{0}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{0}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-4x=\frac{0}{2}
-8 નો 2 થી ભાગાકાર કરો.
x^{2}-4x=0
0 નો 2 થી ભાગાકાર કરો.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
-4, x પદના ગુણાંકને, -2 મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -2 ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-4x+4=4
વર્ગ -2.
\left(x-2\right)^{2}=4
અવયવ x^{2}-4x+4. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-2=2 x-2=-2
સરળ બનાવો.
x=4 x=0
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.