મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો (જટિલ સમાધાન)
Tick mark Image
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -4,\frac{1}{2},1,4 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right) દ્વારા ગુણાકાર કરો, 16-x^{2},2x^{2}-3x+1,4-x ના સૌથી ઓછા સામાન્ય ભાજક.
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1} ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1} સાથે 2x-1 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} નો x^{2}+3x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} નો x^{2}+3x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
કારણ કે \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} અને \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right) માં ગુણાકાર કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4} માં સમાન પદોને સંયોજિત કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
-1 સાથે -1+x નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
1-x નો -1+2x સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
-1+3x-2x^{2} નો 4+x સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
બન્ને બાજુથી -4 ઘટાડો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
-4 નો વિરોધી 4 છે.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
2x^{2}-3x+1 નો અવયવ પાડો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને 4 વાર ગુણાકાર કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
કારણ કે \frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} અને \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4 માં સમાન પદોને સંયોજિત કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
બન્ને બાજુથી 11x ઘટાડો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને -11x વાર ગુણાકાર કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
કારણ કે \frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} અને \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x માં સમાન પદોને સંયોજિત કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
બંને સાઇડ્સ માટે 5x^{2} ઍડ કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને 5x^{2} વાર ગુણાકાર કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
કારણ કે \frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} અને \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2} માં સમાન પદોને સંયોજિત કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
બંને સાઇડ્સ માટે 2x^{3} ઍડ કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને 2x^{3} વાર ગુણાકાર કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
કારણ કે \frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} અને \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3} માં સમાન પદોને સંયોજિત કરો.
0=0
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ \frac{1}{2},1 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો \left(x-1\right)\left(2x-1\right) સાથે ગુણાકાર કરો.
x\in \mathrm{C}
કોઈપણ x માટે આ સાચું છે.
x\in \mathrm{C}\setminus -4,\frac{1}{2},1,4
ચલ x એ \frac{1}{2},1,-4,4 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં.
\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -4,\frac{1}{2},1,4 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right) દ્વારા ગુણાકાર કરો, 16-x^{2},2x^{2}-3x+1,4-x ના સૌથી ઓછા સામાન્ય ભાજક.
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1} ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1} સાથે 2x-1 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} નો x^{2}+3x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} નો x^{2}+3x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
કારણ કે \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} અને \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right) માં ગુણાકાર કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4} માં સમાન પદોને સંયોજિત કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
-1 સાથે -1+x નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
1-x નો -1+2x સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
-1+3x-2x^{2} નો 4+x સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
બન્ને બાજુથી -4 ઘટાડો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
-4 નો વિરોધી 4 છે.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
2x^{2}-3x+1 નો અવયવ પાડો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને 4 વાર ગુણાકાર કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
કારણ કે \frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} અને \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4 માં સમાન પદોને સંયોજિત કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
બન્ને બાજુથી 11x ઘટાડો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને -11x વાર ગુણાકાર કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
કારણ કે \frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} અને \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x માં સમાન પદોને સંયોજિત કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
બંને સાઇડ્સ માટે 5x^{2} ઍડ કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને 5x^{2} વાર ગુણાકાર કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
કારણ કે \frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} અને \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2} માં સમાન પદોને સંયોજિત કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
બંને સાઇડ્સ માટે 2x^{3} ઍડ કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ને 2x^{3} વાર ગુણાકાર કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
કારણ કે \frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} અને \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right) માં ગુણાકાર કરો.
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3} માં સમાન પદોને સંયોજિત કરો.
0=0
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ \frac{1}{2},1 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો \left(x-1\right)\left(2x-1\right) સાથે ગુણાકાર કરો.
x\in \mathrm{R}
કોઈપણ x માટે આ સાચું છે.
x\in \mathrm{R}\setminus -4,\frac{1}{2},1,4
ચલ x એ \frac{1}{2},1,-4,4 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં.