મૂલ્યાંકન કરો
\frac{n^{2}+n-1}{n\left(n+1\right)}
વિસ્તૃત કરો
\frac{n^{2}+n-1}{n\left(n+1\right)}
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. 2\left(n+1\right) અને 2n નો લઘુત્તમ સામાન્ય ગુણાંક 2n\left(n+1\right) છે. \frac{n}{n} ને \frac{2n^{2}-n-1}{2\left(n+1\right)} વાર ગુણાકાર કરો. \frac{n+1}{n+1} ને \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} વાર ગુણાકાર કરો.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
કારણ કે \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} અને \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right) માં ગુણાકાર કરો.
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1 માં સમાન પદોને સંયોજિત કરો.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી \frac{2n^{2}+2n-2}{2n\left(n+1\right)} માં અવયવ નથી.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
2 ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
n\left(n+1\right) ને વિસ્તૃત કરો.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
-\frac{1}{2}\sqrt{5}-\frac{1}{2} નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
\frac{1}{2}\sqrt{5}-\frac{1}{2} નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
n+\frac{1}{2}\sqrt{5}+\frac{1}{2} નો n-\frac{1}{2}\sqrt{5}+\frac{1}{2} સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
\sqrt{5} નો વર્ગ 5 છે.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
-\frac{5}{4} મેળવવા માટે -\frac{1}{4} સાથે 5 નો ગુણાકાર કરો.
\frac{n^{2}+n-1}{n^{2}+n}
-1મેળવવા માટે -\frac{5}{4} અને \frac{1}{4} ને ઍડ કરો.
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. 2\left(n+1\right) અને 2n નો લઘુત્તમ સામાન્ય ગુણાંક 2n\left(n+1\right) છે. \frac{n}{n} ને \frac{2n^{2}-n-1}{2\left(n+1\right)} વાર ગુણાકાર કરો. \frac{n+1}{n+1} ને \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} વાર ગુણાકાર કરો.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
કારણ કે \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} અને \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right) માં ગુણાકાર કરો.
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1 માં સમાન પદોને સંયોજિત કરો.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી \frac{2n^{2}+2n-2}{2n\left(n+1\right)} માં અવયવ નથી.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
2 ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
n\left(n+1\right) ને વિસ્તૃત કરો.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
-\frac{1}{2}\sqrt{5}-\frac{1}{2} નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
\frac{1}{2}\sqrt{5}-\frac{1}{2} નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
n+\frac{1}{2}\sqrt{5}+\frac{1}{2} નો n-\frac{1}{2}\sqrt{5}+\frac{1}{2} સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
\sqrt{5} નો વર્ગ 5 છે.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
-\frac{5}{4} મેળવવા માટે -\frac{1}{4} સાથે 5 નો ગુણાકાર કરો.
\frac{n^{2}+n-1}{n^{2}+n}
-1મેળવવા માટે -\frac{5}{4} અને \frac{1}{4} ને ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}