મુખ્ય સમાવિષ્ટ પર જાવ
મૂલ્યાંકન કરો
Tick mark Image
વિસ્તૃત કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. x અને 1-x નો લઘુત્તમ સામાન્ય ગુણાંક x\left(-x+1\right) છે. \frac{-x+1}{-x+1} ને \frac{1-x^{2}}{x} વાર ગુણાકાર કરો. \frac{x}{x} ને \frac{6}{1-x} વાર ગુણાકાર કરો.
\frac{\left(1-x^{2}\right)\left(-x+1\right)-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
કારણ કે \frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)} અને \frac{6x}{x\left(-x+1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{1-x+x^{3}-x^{2}-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
\left(1-x^{2}\right)\left(-x+1\right)-6x માં ગુણાકાર કરો.
\frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
1-x+x^{3}-x^{2}-6x માં સમાન પદોને સંયોજિત કરો.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. x\left(-x+1\right) અને x^{2} નો લઘુત્તમ સામાન્ય ગુણાંક \left(x-1\right)x^{2} છે. \frac{-x}{-x} ને \frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)} વાર ગુણાકાર કરો. \frac{x-1}{x-1} ને \frac{x+1}{x^{2}} વાર ગુણાકાર કરો.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
કારણ કે \frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}} અને \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{-x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x}{\left(x-1\right)x^{2}}
\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right) માં ગુણાકાર કરો.
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{\left(x-1\right)x^{2}}
-x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x માં સમાન પદોને સંયોજિત કરો.
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{x^{3}-x^{2}}
\left(x-1\right)x^{2} ને વિસ્તૃત કરો.
\frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. x અને 1-x નો લઘુત્તમ સામાન્ય ગુણાંક x\left(-x+1\right) છે. \frac{-x+1}{-x+1} ને \frac{1-x^{2}}{x} વાર ગુણાકાર કરો. \frac{x}{x} ને \frac{6}{1-x} વાર ગુણાકાર કરો.
\frac{\left(1-x^{2}\right)\left(-x+1\right)-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
કારણ કે \frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)} અને \frac{6x}{x\left(-x+1\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{1-x+x^{3}-x^{2}-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
\left(1-x^{2}\right)\left(-x+1\right)-6x માં ગુણાકાર કરો.
\frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
1-x+x^{3}-x^{2}-6x માં સમાન પદોને સંયોજિત કરો.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. x\left(-x+1\right) અને x^{2} નો લઘુત્તમ સામાન્ય ગુણાંક \left(x-1\right)x^{2} છે. \frac{-x}{-x} ને \frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)} વાર ગુણાકાર કરો. \frac{x-1}{x-1} ને \frac{x+1}{x^{2}} વાર ગુણાકાર કરો.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
કારણ કે \frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}} અને \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{-x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x}{\left(x-1\right)x^{2}}
\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right) માં ગુણાકાર કરો.
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{\left(x-1\right)x^{2}}
-x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x માં સમાન પદોને સંયોજિત કરો.
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{x^{3}-x^{2}}
\left(x-1\right)x^{2} ને વિસ્તૃત કરો.