મુખ્ય સમાવિષ્ટ પર જાવ
મૂલ્યાંકન કરો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
4 ના વર્ગમૂળની ગણતરી કરો અને 2 મેળવો.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
\frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}} ના અંશને \sqrt{7}-\sqrt{3} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{7-3}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
વર્ગ \sqrt{7}. વર્ગ \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
4 મેળવવા માટે 7 માંથી 3 ને ઘટાડો.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
4 ના વર્ગમૂળની ગણતરી કરો અને 2 મેળવો.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
\frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}} ના અંશને \sqrt{7}+\sqrt{3} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
વર્ગ \sqrt{7}. વર્ગ \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
4 મેળવવા માટે 7 માંથી 3 ને ઘટાડો.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
કારણ કે \frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4} અને \frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3}{4}
\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right) માં ગુણાકાર કરો.
\frac{4\sqrt{7}+6}{4}
2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3 માં ગણતરીઓ કરો.