મૂલ્યાંકન કરો
\sqrt{6}+3\approx 5.449489743
ક્વિઝ
Arithmetic
આના જેવા 5 પ્રશ્ન:
\frac { \sqrt { 18 } - \sqrt { 12 } } { \sqrt { 50 } - \sqrt { 48 } }
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{3\sqrt{2}-\sqrt{12}}{\sqrt{50}-\sqrt{48}}
18=3^{2}\times 2 નો અવયવ પાડો. ગુણનફળ \sqrt{3^{2}\times 2} ના વર્ગમૂળને \sqrt{3^{2}}\sqrt{2} ના વર્ગમૂળના ગુણનફળ તરીકે ફરીથી લખો. 3^{2} નો વર્ગ મૂળ લો.
\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{50}-\sqrt{48}}
12=2^{2}\times 3 નો અવયવ પાડો. ગુણનફળ \sqrt{2^{2}\times 3} ના વર્ગમૂળને \sqrt{2^{2}}\sqrt{3} ના વર્ગમૂળના ગુણનફળ તરીકે ફરીથી લખો. 2^{2} નો વર્ગ મૂળ લો.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-\sqrt{48}}
50=5^{2}\times 2 નો અવયવ પાડો. ગુણનફળ \sqrt{5^{2}\times 2} ના વર્ગમૂળને \sqrt{5^{2}}\sqrt{2} ના વર્ગમૂળના ગુણનફળ તરીકે ફરીથી લખો. 5^{2} નો વર્ગ મૂળ લો.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}}
48=4^{2}\times 3 નો અવયવ પાડો. ગુણનફળ \sqrt{4^{2}\times 3} ના વર્ગમૂળને \sqrt{4^{2}}\sqrt{3} ના વર્ગમૂળના ગુણનફળ તરીકે ફરીથી લખો. 4^{2} નો વર્ગ મૂળ લો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}} ના અંશને 5\sqrt{2}+4\sqrt{3} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{5^{2}\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
\left(5\sqrt{2}\right)^{2} ને વિસ્તૃત કરો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
2 ના 5 ની ગણના કરો અને 25 મેળવો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\times 2-\left(-4\sqrt{3}\right)^{2}}
\sqrt{2} નો વર્ગ 2 છે.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\sqrt{3}\right)^{2}}
50 મેળવવા માટે 25 સાથે 2 નો ગુણાકાર કરો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-4\sqrt{3}\right)^{2} ને વિસ્તૃત કરો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\left(\sqrt{3}\right)^{2}}
2 ના -4 ની ગણના કરો અને 16 મેળવો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\times 3}
\sqrt{3} નો વર્ગ 3 છે.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-48}
48 મેળવવા માટે 16 સાથે 3 નો ગુણાકાર કરો.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{2}
2 મેળવવા માટે 50 માંથી 48 ને ઘટાડો.
\frac{15\left(\sqrt{2}\right)^{2}+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
3\sqrt{2}-2\sqrt{3} ના પ્રત્યેક પદનો 5\sqrt{2}+4\sqrt{3} ના પ્રત્યેક પદ દ્વારા ગુણોત્તર કરીને વિતરણના ગુણધર્મ લાગુ કરો.
\frac{15\times 2+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{2} નો વર્ગ 2 છે.
\frac{30+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
30 મેળવવા માટે 15 સાથે 2 નો ગુણાકાર કરો.
\frac{30+12\sqrt{6}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} અને \sqrt{2} નું ગુણાકાર કરવા માટે, વર્ગમૂળ હેઠળ સંખ્યાઓનો ગુણાકાર કરો.
\frac{30+12\sqrt{6}-10\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} અને \sqrt{2} નું ગુણાકાર કરવા માટે, વર્ગમૂળ હેઠળ સંખ્યાઓનો ગુણાકાર કરો.
\frac{30+2\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
2\sqrt{6} ને મેળવવા માટે 12\sqrt{6} અને -10\sqrt{6} ને એકસાથે કરો.
\frac{30+2\sqrt{6}-8\times 3}{2}
\sqrt{3} નો વર્ગ 3 છે.
\frac{30+2\sqrt{6}-24}{2}
-24 મેળવવા માટે -8 સાથે 3 નો ગુણાકાર કરો.
\frac{6+2\sqrt{6}}{2}
6 મેળવવા માટે 30 માંથી 24 ને ઘટાડો.
3+\sqrt{6}
3+\sqrt{6} મેળવવા માટે 6+2\sqrt{6} ની દરેક ટર્મનો 2 થી ભાગાકાર કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}