મૂલ્યાંકન કરો
x+y
વિસ્તૃત કરો
x+y
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
x^{2}-xy નો અવયવ પાડો. y^{2}-xy નો અવયવ પાડો.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. x\left(x-y\right) અને y\left(-x+y\right) નો લઘુત્તમ સામાન્ય ગુણાંક xy\left(-x+y\right) છે. \frac{-y}{-y} ને \frac{1}{x\left(x-y\right)} વાર ગુણાકાર કરો. \frac{x}{x} ને \frac{1}{y\left(-x+y\right)} વાર ગુણાકાર કરો.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
કારણ કે \frac{-y}{xy\left(-x+y\right)} અને \frac{x}{xy\left(-x+y\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
\frac{-y-x}{xy\left(-x+y\right)} ને \frac{1}{x^{2}y-y^{2}x} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{-y-x}{xy\left(-x+y\right)} નો \frac{1}{x^{2}y-y^{2}x} થી ભાગાકાર કરો.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી અવયવ નથી.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
x-y માંનું નકારાત્મક ચિહ્ન બહાર કાઢો.
-\left(-x-y\right)
xy\left(-x+y\right) ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
x+y
પદાવલિને વિસ્તૃત કરો.
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
x^{2}-xy નો અવયવ પાડો. y^{2}-xy નો અવયવ પાડો.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. x\left(x-y\right) અને y\left(-x+y\right) નો લઘુત્તમ સામાન્ય ગુણાંક xy\left(-x+y\right) છે. \frac{-y}{-y} ને \frac{1}{x\left(x-y\right)} વાર ગુણાકાર કરો. \frac{x}{x} ને \frac{1}{y\left(-x+y\right)} વાર ગુણાકાર કરો.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
કારણ કે \frac{-y}{xy\left(-x+y\right)} અને \frac{x}{xy\left(-x+y\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
\frac{-y-x}{xy\left(-x+y\right)} ને \frac{1}{x^{2}y-y^{2}x} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{-y-x}{xy\left(-x+y\right)} નો \frac{1}{x^{2}y-y^{2}x} થી ભાગાકાર કરો.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી અવયવ નથી.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
x-y માંનું નકારાત્મક ચિહ્ન બહાર કાઢો.
-\left(-x-y\right)
xy\left(-x+y\right) ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
x+y
પદાવલિને વિસ્તૃત કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}