મૂલ્યાંકન કરો
\frac{\left(x-2\right)\left(8x-3\right)x^{8}}{12}
વિસ્તૃત કરો
\frac{2x^{10}}{3}-\frac{19x^{9}}{12}+\frac{x^{8}}{2}
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4}\left(2x^{2}-\frac{3}{4}x\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{3}+\frac{2}{5}x^{2}-\frac{1}{2}x સાથે x નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{\left(2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5}\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4} સાથે 2x^{2}-\frac{3}{4}x નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{\frac{19}{8}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5} નો x-\frac{1}{2}x^{2} સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{\frac{19}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) ને \frac{1}{3} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) નો \frac{1}{3} થી ભાગાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
\frac{57}{8} મેળવવા માટે \frac{19}{8} સાથે 3 નો ગુણાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) ને \frac{1}{3} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) નો \frac{1}{3} થી ભાગાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
-3 મેળવવા માટે -1 સાથે 3 નો ગુણાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{6}}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) ને \frac{1}{3} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) નો \frac{1}{3} થી ભાગાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{9}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{6}}{-\frac{3}{2}x^{2}}
-\frac{9}{4} મેળવવા માટે -\frac{3}{4} સાથે 3 નો ગુણાકાર કરો.
\frac{\frac{1}{80}\times 10x\left(8x-3\right)\left(-x+2\right)x^{3}x^{6}}{-\frac{3}{2}x^{2}}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી અવયવ નથી.
\frac{\frac{1}{80}\times 10\left(8x-3\right)\left(-x+2\right)x^{2}x^{6}}{-\frac{3}{2}}
xx ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
\frac{-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}}{-\frac{3}{2}}
પદાવલિને વિસ્તૃત કરો.
\frac{\left(-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}\right)\times 2}{-3}
-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} ને -\frac{3}{2} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} નો -\frac{3}{2} થી ભાગાકાર કરો.
\frac{-2x^{10}+\frac{19}{4}x^{9}-\frac{3}{2}x^{8}}{-3}
-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} સાથે 2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4}\left(2x^{2}-\frac{3}{4}x\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{3}+\frac{2}{5}x^{2}-\frac{1}{2}x સાથે x નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{\left(2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5}\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4} સાથે 2x^{2}-\frac{3}{4}x નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{\frac{19}{8}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5} નો x-\frac{1}{2}x^{2} સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{\frac{19}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) ને \frac{1}{3} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) નો \frac{1}{3} થી ભાગાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
\frac{57}{8} મેળવવા માટે \frac{19}{8} સાથે 3 નો ગુણાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) ને \frac{1}{3} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) નો \frac{1}{3} થી ભાગાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
-3 મેળવવા માટે -1 સાથે 3 નો ગુણાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{6}}{-\frac{3}{2}x^{2}}
\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) ને \frac{1}{3} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) નો \frac{1}{3} થી ભાગાકાર કરો.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{9}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{6}}{-\frac{3}{2}x^{2}}
-\frac{9}{4} મેળવવા માટે -\frac{3}{4} સાથે 3 નો ગુણાકાર કરો.
\frac{\frac{1}{80}\times 10x\left(8x-3\right)\left(-x+2\right)x^{3}x^{6}}{-\frac{3}{2}x^{2}}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી અવયવ નથી.
\frac{\frac{1}{80}\times 10\left(8x-3\right)\left(-x+2\right)x^{2}x^{6}}{-\frac{3}{2}}
xx ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
\frac{-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}}{-\frac{3}{2}}
પદાવલિને વિસ્તૃત કરો.
\frac{\left(-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}\right)\times 2}{-3}
-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} ને -\frac{3}{2} ના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાથી -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} નો -\frac{3}{2} થી ભાગાકાર કરો.
\frac{-2x^{10}+\frac{19}{4}x^{9}-\frac{3}{2}x^{8}}{-3}
-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} સાથે 2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}