મૂલ્યાંકન કરો
\frac{r^{2}}{11}
w.r.t.r ભેદ પાડો
\frac{2r}{11}
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{rr}{11}
\frac{r}{11}r ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
\frac{r^{2}}{11}
r^{2} મેળવવા માટે r સાથે r નો ગુણાકાર કરો.
\frac{1}{11}r^{1}\frac{\mathrm{d}}{\mathrm{d}r}(r^{1})+r^{1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{11}r^{1})
કોઈપણ બે ભેદકારક ફંક્શન્સ માટે, બે ફંક્શન્સના ગુણનફળનું વ્યુત્પન્ન એ પહેલા ફંક્શન વાર બીજાના વ્યુત્પન્ન વત્તા બીજા ફંક્શન વાર પહેલાનું વ્યુત્પન્ન છે.
\frac{1}{11}r^{1}r^{1-1}+r^{1}\times \frac{1}{11}r^{1-1}
બહુપદીનું વ્યુત્પન્ન એ એના પદોના વ્યુત્પન્નનો સરવાળો છે. કોઈ અચલ પદનું વ્યુત્પન્ન 0 છે. ax^{n} નું વ્યુત્પન્ન nax^{n-1} છે.
\frac{1}{11}r^{1}r^{0}+r^{1}\times \frac{1}{11}r^{0}
સરળ બનાવો.
\frac{1}{11}r^{1}+\frac{1}{11}r^{1}
સમાન આધારના ઘાતનો ગુણાકાર કરવા, તેમના ઘાતાંકો ઉમેરો.
\frac{1+1}{11}r^{1}
સમાન પદોને સંયુક્ત કરો.
\frac{2}{11}r^{1}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{11} માં \frac{1}{11} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\frac{2}{11}r
કોઈ પણ શબ્દ t, t^{1}=t માટે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}