મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2\left(x^{2}-4x-5\right)
2 નો અવયવ પાડો.
a+b=-4 ab=1\left(-5\right)=-5
x^{2}-4x-5 ગણતરી કરો. સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx-5 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=-5 b=1
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(x^{2}-5x\right)+\left(x-5\right)
x^{2}-4x-5 ને \left(x^{2}-5x\right)+\left(x-5\right) તરીકે ફરીથી લખો.
x\left(x-5\right)+x-5
x^{2}-5x માં x ના અવયવ પાડો.
\left(x-5\right)\left(x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-5 ના અવયવ પાડો.
2\left(x-5\right)\left(x+1\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
2x^{2}-8x-10=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-10\right)}}{2\times 2}
વર્ગ -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-10\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2\times 2}
-10 ને -8 વાર ગુણાકાર કરો.
x=\frac{-\left(-8\right)±\sqrt{144}}{2\times 2}
80 માં 64 ઍડ કરો.
x=\frac{-\left(-8\right)±12}{2\times 2}
144 નો વર્ગ મૂળ લો.
x=\frac{8±12}{2\times 2}
-8 નો વિરોધી 8 છે.
x=\frac{8±12}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{20}{4}
હવે x=\frac{8±12}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 12 માં 8 ઍડ કરો.
x=5
20 નો 4 થી ભાગાકાર કરો.
x=-\frac{4}{4}
હવે x=\frac{8±12}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 8 માંથી 12 ને ઘટાડો.
x=-1
-4 નો 4 થી ભાગાકાર કરો.
2x^{2}-8x-10=2\left(x-5\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 5 અને x_{2} ને બદલે -1 મૂકો.
2x^{2}-8x-10=2\left(x-5\right)\left(x+1\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.