20000 + 400 \% + 30 \div 360 \times 1 =
Calcular
\frac{240049}{12}\approx 20004.083333333
Factorizar
\frac{240049}{2 ^ {2} \cdot 3} = 20004\frac{1}{12} = 20004.083333333332
Compartir
Copiado a portapapeis
20000+4+\frac{30}{360}\times 1
Divide 400 entre 100 para obter 4.
20004+\frac{30}{360}\times 1
Suma 20000 e 4 para obter 20004.
20004+\frac{1}{12}\times 1
Reduce a fracción \frac{30}{360} a termos máis baixos extraendo e cancelando 30.
20004+\frac{1}{12}
Multiplica \frac{1}{12} e 1 para obter \frac{1}{12}.
\frac{240048}{12}+\frac{1}{12}
Converter 20004 á fracción \frac{240048}{12}.
\frac{240048+1}{12}
Dado que \frac{240048}{12} e \frac{1}{12} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{240049}{12}
Suma 240048 e 1 para obter 240049.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}