Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x\left(2x+10\right)=0
Factoriza x.
x=0 x=-5
Para atopar as solucións de ecuación, resolve x=0 e 2x+10=0.
2x^{2}+10x=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-10±\sqrt{10^{2}}}{2\times 2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 2, b por 10 e c por 0 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±10}{2\times 2}
Obtén a raíz cadrada de 10^{2}.
x=\frac{-10±10}{4}
Multiplica 2 por 2.
x=\frac{0}{4}
Agora resolve a ecuación x=\frac{-10±10}{4} se ± é máis. Suma -10 a 10.
x=0
Divide 0 entre 4.
x=-\frac{20}{4}
Agora resolve a ecuación x=\frac{-10±10}{4} se ± é menos. Resta 10 de -10.
x=-5
Divide -20 entre 4.
x=0 x=-5
A ecuación está resolta.
2x^{2}+10x=0
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
\frac{2x^{2}+10x}{2}=\frac{0}{2}
Divide ambos lados entre 2.
x^{2}+\frac{10}{2}x=\frac{0}{2}
A división entre 2 desfai a multiplicación por 2.
x^{2}+5x=\frac{0}{2}
Divide 10 entre 2.
x^{2}+5x=0
Divide 0 entre 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
Divide 5, o coeficiente do termo x, entre 2 para obter \frac{5}{2}. Despois, suma o cadrado de \frac{5}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Eleva \frac{5}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
Factoriza x^{2}+5x+\frac{25}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Simplifica.
x=0 x=-5
Resta \frac{5}{2} en ambos lados da ecuación.