Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Compartir

\frac{\frac{-\frac{3}{4}\times \frac{50+21}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica 2 e 25 para obter 50.
\frac{\frac{-\frac{3}{4}\times \frac{71}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Suma 50 e 21 para obter 71.
\frac{\frac{\frac{-3\times 71}{4\times 25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica -\frac{3}{4} por \frac{71}{25} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{\frac{\frac{-213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Fai as multiplicacións na fracción \frac{-3\times 71}{4\times 25}.
\frac{\frac{-\frac{213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
A fracción \frac{-213}{100} pode volver escribirse como -\frac{213}{100} extraendo o signo negativo.
\frac{\frac{-\frac{213}{100}}{\frac{15+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica 3 e 5 para obter 15.
\frac{\frac{-\frac{213}{100}}{\frac{18}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Suma 15 e 3 para obter 18.
\frac{-\frac{213}{100}\times \frac{5}{18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Divide -\frac{213}{100} entre \frac{18}{5} mediante a multiplicación de -\frac{213}{100} polo recíproco de \frac{18}{5}.
\frac{\frac{-213\times 5}{100\times 18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica -\frac{213}{100} por \frac{5}{18} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{\frac{-1065}{1800}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Fai as multiplicacións na fracción \frac{-213\times 5}{100\times 18}.
\frac{-\frac{71}{120}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Reduce a fracción \frac{-1065}{1800} a termos máis baixos extraendo e cancelando 15.
\frac{-\frac{71}{120}}{-\frac{2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica 1 e 2 para obter 2.
\frac{-\frac{71}{120}}{-\frac{3}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Suma 2 e 1 para obter 3.
-\frac{71}{120}\left(-\frac{2}{3}\right)\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Divide -\frac{71}{120} entre -\frac{3}{2} mediante a multiplicación de -\frac{71}{120} polo recíproco de -\frac{3}{2}.
\frac{-71\left(-2\right)}{120\times 3}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica -\frac{71}{120} por -\frac{2}{3} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{142}{360}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Fai as multiplicacións na fracción \frac{-71\left(-2\right)}{120\times 3}.
\frac{71}{180}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Reduce a fracción \frac{142}{360} a termos máis baixos extraendo e cancelando 2.
\frac{71}{180}\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica 1 e 50 para obter 50.
\frac{71}{180}\times \frac{71}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Suma 50 e 21 para obter 71.
\frac{71\times 71}{180\times 50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica \frac{71}{180} por \frac{71}{50} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{5041}{9000}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Fai as multiplicacións na fracción \frac{71\times 71}{180\times 50}.
\frac{5041\left(-18\right)}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Expresa \frac{5041}{9000}\left(-18\right) como unha única fracción.
\frac{-90738}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Multiplica 5041 e -18 para obter -90738.
-\frac{5041}{500}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Reduce a fracción \frac{-90738}{9000} a termos máis baixos extraendo e cancelando 18.
-\frac{5041}{500}-4\times 25\left(-\frac{4\times 20+1}{20}\right)
Calcula -2 á potencia de 2 e obtén 4.
-\frac{5041}{500}-100\left(-\frac{4\times 20+1}{20}\right)
Multiplica 4 e 25 para obter 100.
-\frac{5041}{500}-100\left(-\frac{80+1}{20}\right)
Multiplica 4 e 20 para obter 80.
-\frac{5041}{500}-100\left(-\frac{81}{20}\right)
Suma 80 e 1 para obter 81.
-\frac{5041}{500}-\frac{100\left(-81\right)}{20}
Expresa 100\left(-\frac{81}{20}\right) como unha única fracción.
-\frac{5041}{500}-\frac{-8100}{20}
Multiplica 100 e -81 para obter -8100.
-\frac{5041}{500}-\left(-405\right)
Divide -8100 entre 20 para obter -405.
-\frac{5041}{500}+405
O contrario de -405 é 405.
-\frac{5041}{500}+\frac{202500}{500}
Converter 405 á fracción \frac{202500}{500}.
\frac{-5041+202500}{500}
Dado que -\frac{5041}{500} e \frac{202500}{500} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{197459}{500}
Suma -5041 e 202500 para obter 197459.