Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{12}{28}+\frac{7}{28}-\left(\frac{2}{7}+\frac{4}{6}\right)
O mínimo común múltiplo de 7 e 4 é 28. Converte \frac{3}{7} e \frac{1}{4} a fraccións co denominador 28.
\frac{12+7}{28}-\left(\frac{2}{7}+\frac{4}{6}\right)
Dado que \frac{12}{28} e \frac{7}{28} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{19}{28}-\left(\frac{2}{7}+\frac{4}{6}\right)
Suma 12 e 7 para obter 19.
\frac{19}{28}-\left(\frac{2}{7}+\frac{2}{3}\right)
Reduce a fracción \frac{4}{6} a termos máis baixos extraendo e cancelando 2.
\frac{19}{28}-\left(\frac{6}{21}+\frac{14}{21}\right)
O mínimo común múltiplo de 7 e 3 é 21. Converte \frac{2}{7} e \frac{2}{3} a fraccións co denominador 21.
\frac{19}{28}-\frac{6+14}{21}
Dado que \frac{6}{21} e \frac{14}{21} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{19}{28}-\frac{20}{21}
Suma 6 e 14 para obter 20.
\frac{57}{84}-\frac{80}{84}
O mínimo común múltiplo de 28 e 21 é 84. Converte \frac{19}{28} e \frac{20}{21} a fraccións co denominador 84.
\frac{57-80}{84}
Dado que \frac{57}{84} e \frac{80}{84} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
-\frac{23}{84}
Resta 80 de 57 para obter -23.