Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Compartir

\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{7}{3}\times \frac{7}{3}}{2+\frac{1}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Suma \frac{1}{3} e 2 para obter \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{49}{9}}{2+\frac{1}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Multiplica \frac{7}{3} e \frac{7}{3} para obter \frac{49}{9}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{49}{9}}{\frac{5}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Suma 2 e \frac{1}{2} para obter \frac{5}{2}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{49}{9}\times \frac{2}{5}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Divide \frac{49}{9} entre \frac{5}{2} mediante a multiplicación de \frac{49}{9} polo recíproco de \frac{5}{2}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{98}{45}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Multiplica \frac{49}{9} e \frac{2}{5} para obter \frac{98}{45}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{98}{45}}{\frac{7}{3}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Suma \frac{5}{6} e \frac{3}{2} para obter \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{98}{45}\times \frac{3}{7}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Divide \frac{98}{45} entre \frac{7}{3} mediante a multiplicación de \frac{98}{45} polo recíproco de \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{14}{15}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Multiplica \frac{98}{45} e \frac{3}{7} para obter \frac{14}{15}.
\sqrt{6\left(\frac{5}{13}\left(\frac{29}{15}-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Suma \frac{14}{15} e 1 para obter \frac{29}{15}.
\sqrt{6\left(\frac{5}{13}\times \frac{26}{15}-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Resta \frac{1}{5} de \frac{29}{15} para obter \frac{26}{15}.
\sqrt{6\left(\frac{2}{3}-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Multiplica \frac{5}{13} e \frac{26}{15} para obter \frac{2}{3}.
\sqrt{6\times \frac{1}{6}\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Resta \frac{1}{2} de \frac{2}{3} para obter \frac{1}{6}.
\sqrt{\left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Multiplica 6 e \frac{1}{6} para obter 1.
\sqrt{\left(\frac{5}{9}\times \frac{\frac{9}{5}}{\frac{5}{2}}\right)^{2}}
Suma \frac{2}{15} e \frac{5}{3} para obter \frac{9}{5}.
\sqrt{\left(\frac{5}{9}\times \frac{9}{5}\times \frac{2}{5}\right)^{2}}
Divide \frac{9}{5} entre \frac{5}{2} mediante a multiplicación de \frac{9}{5} polo recíproco de \frac{5}{2}.
\sqrt{\left(\frac{5}{9}\times \frac{18}{25}\right)^{2}}
Multiplica \frac{9}{5} e \frac{2}{5} para obter \frac{18}{25}.
\sqrt{\left(\frac{2}{5}\right)^{2}}
Multiplica \frac{5}{9} e \frac{18}{25} para obter \frac{2}{5}.
\sqrt{\frac{4}{25}}
Calcula \frac{2}{5} á potencia de 2 e obtén \frac{4}{25}.
\frac{2}{5}
Reescribe a raíz cadrada da división \frac{4}{25} como a división de raíces cadradas \frac{\sqrt{4}}{\sqrt{25}}. Obtén a raíz cadrada do numerador e o denominador.