Saltar ao contido principal
Resolver x, y, z
Tick mark Image

Problemas similares da busca web

Compartir

x=-y+3z-t+2c
Despexa x en x+y-3z+t=2c.
3\left(-y+3z-t+2c\right)-y+z-t=2a -\left(-y+3z-t+2c\right)+3y-z+t=2b
Substitúe -y+3z-t+2c por x na segunda e na terceira ecuación.
y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
Despexa y e z respectivamente nestas ecuacións.
z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
Substitúe y por -t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c na ecuación z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t.
z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
Despexa z en z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t.
y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c
Substitúe z por \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b na ecuación y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c.
y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b
Calcular y tendo en conta que y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c.
x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c
Substitúe -\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b por y e \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b por z na ecuación x=-y+3z-t+2c.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b
Calcular x tendo en conta que x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
O sistema xa funciona correctamente.