\left\{ \begin{array} { l } { 3 x + 2 y = 4 } \\ { x + y = 3 } \end{array} \right.
Resolver x, y
x=-2
y=5
Gráfico
Compartir
Copiado a portapapeis
3x+2y=4,x+y=3
Para resolver un par de ecuacións mediante substitución, resolve primeiro unha das variables nunha das ecuacións. Despois, substitúe o resultado desa variable na outra ecuación.
3x+2y=4
Escolle unha das ecuacións e despexa a x mediante o illamento de x no lado esquerdo do signo igual.
3x=-2y+4
Resta 2y en ambos lados da ecuación.
x=\frac{1}{3}\left(-2y+4\right)
Divide ambos lados entre 3.
x=-\frac{2}{3}y+\frac{4}{3}
Multiplica \frac{1}{3} por -2y+4.
-\frac{2}{3}y+\frac{4}{3}+y=3
Substitúe x por \frac{-2y+4}{3} na outra ecuación, x+y=3.
\frac{1}{3}y+\frac{4}{3}=3
Suma -\frac{2y}{3} a y.
\frac{1}{3}y=\frac{5}{3}
Resta \frac{4}{3} en ambos lados da ecuación.
y=5
Multiplica ambos lados por 3.
x=-\frac{2}{3}\times 5+\frac{4}{3}
Substitúe y por 5 en x=-\frac{2}{3}y+\frac{4}{3}. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
x=\frac{-10+4}{3}
Multiplica -\frac{2}{3} por 5.
x=-2
Suma \frac{4}{3} a -\frac{10}{3} mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
x=-2,y=5
O sistema xa funciona correctamente.
3x+2y=4,x+y=3
Converte as ecuacións a forma estándar e logo usa matrices para resolver o sistema de ecuacións.
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Escribe as ecuacións en forma matricial.
inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Multiplica a ecuación pola matriz inversa de \left(\begin{matrix}3&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
O produto dunha matriz e o seu inverso é a matriz de identidade.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Multiplica as matrices no lado esquerdo do signo igual.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{2}{3-2}\\-\frac{1}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
A matriz inversa da matriz 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) é \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), polo que a ecuación da matriz se pode escribir como un problema de multiplicación de matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\-1&3\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
Fai o cálculo.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4-2\times 3\\-4+3\times 3\end{matrix}\right)
Multiplica as matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\5\end{matrix}\right)
Fai o cálculo.
x=-2,y=5
Extrae os elementos da matriz x e y.
3x+2y=4,x+y=3
Para resolver por eliminación, os coeficientes dunha das variables deben ser iguais en ambas ecuacións de xeito que a variable se anule cando unha ecuación se reste da outra.
3x+2y=4,3x+3y=3\times 3
Para que 3x e x sexan iguais, multiplica todos os termos a cada lado da primeira ecuación por 1 e todos os termos a cada lado da segunda por 3.
3x+2y=4,3x+3y=9
Simplifica.
3x-3x+2y-3y=4-9
Resta 3x+3y=9 de 3x+2y=4 mediante a resta de termos semellantes en ambos lados do signo igual.
2y-3y=4-9
Suma 3x a -3x. 3x e -3x anúlanse, polo que queda unha ecuación cunha única variable que se pode resolver.
-y=4-9
Suma 2y a -3y.
-y=-5
Suma 4 a -9.
y=5
Divide ambos lados entre -1.
x+5=3
Substitúe y por 5 en x+y=3. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
x=-2
Resta 5 en ambos lados da ecuación.
x=-2,y=5
O sistema xa funciona correctamente.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}