Saltar ao contido principal
Calcular
Tick mark Image

Problemas similares da busca web

Compartir

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Usar teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-2\right)^{2}.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Para calcular o oposto de x^{2}-4x+4, calcula o oposto de cada termo.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Resta 4 de 2 para obter -2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
Eleva -2-x^{2}+4x ao cadrado.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
Multiplica 0 e 5 para obter 0.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
Resta 0 de 2 para obter 2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
Calcula 2 á potencia de 2 e obtén 4.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Resta 4 de 4 para obter 0.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Calcula a integral indefinida primeiro.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
Integrar o termo da suma por termo.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Factorizar a constante en cada termo.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{4}\mathrm{d}x por \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica -8 por \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica 20 por \frac{x^{3}}{3}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica -16 por \frac{x^{2}}{2}.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
A integral definida é a primitiva da expresión calculada no límite superior de integración menos a primitiva calculada no límite inferior de integración.
\frac{10970799276608}{15}
Simplifica.