Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares da busca web

Compartir

\int 2x^{5}\mathrm{d}x+\int 4x^{3}\mathrm{d}x+\int -3x\mathrm{d}x+\int 8\mathrm{d}x
Integrar o termo da suma por termo.
2\int x^{5}\mathrm{d}x+4\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Factorizar a constante en cada termo.
\frac{x^{6}}{3}+4\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{5}\mathrm{d}x por \frac{x^{6}}{6}. Multiplica 2 por \frac{x^{6}}{6}.
\frac{x^{6}}{3}+x^{4}-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica 4 por \frac{x^{4}}{4}.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+\int 8\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica -3 por \frac{x^{2}}{2}.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+8x
Descubre a integral de 8 empregando a táboa de integrais comúns regra \int a\mathrm{d}x=ax.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+8x+С
Se F\left(x\right) é a primitiva de f\left(x\right), entón o conxunto de todas as primitivas de f\left(x\right) ven dado por F\left(x\right)+C. Entón, engade a constante de integración C\in \mathrm{R} ao resultado.