Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x+25=\left(x+5\right)\times \frac{\frac{5}{2}}{\frac{16}{5}}
A variable x non pode ser igual a -5 porque a división entre cero non está definida. Multiplica ambos lados da ecuación por x+5.
x+25=\left(x+5\right)\times \frac{5}{2}\times \frac{5}{16}
Divide \frac{5}{2} entre \frac{16}{5} mediante a multiplicación de \frac{5}{2} polo recíproco de \frac{16}{5}.
x+25=\left(x+5\right)\times \frac{25}{32}
Multiplica \frac{5}{2} e \frac{5}{16} para obter \frac{25}{32}.
x+25=\frac{25}{32}x+\frac{125}{32}
Usa a propiedade distributiva para multiplicar x+5 por \frac{25}{32}.
x+25-\frac{25}{32}x=\frac{125}{32}
Resta \frac{25}{32}x en ambos lados.
\frac{7}{32}x+25=\frac{125}{32}
Combina x e -\frac{25}{32}x para obter \frac{7}{32}x.
\frac{7}{32}x=\frac{125}{32}-25
Resta 25 en ambos lados.
\frac{7}{32}x=-\frac{675}{32}
Resta 25 de \frac{125}{32} para obter -\frac{675}{32}.
x=-\frac{675}{32}\times \frac{32}{7}
Multiplica ambos lados por \frac{32}{7}, o recíproco de \frac{7}{32}.
x=-\frac{675}{7}
Multiplica -\frac{675}{32} e \frac{32}{7} para obter -\frac{675}{7}.