Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{x+1}{\left(x-3\right)\left(x+4\right)}-\frac{x-4}{\left(x+3\right)\left(x+4\right)}
Factoriza x^{2}+x-12. Factoriza x^{2}+7x+12.
\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}-\frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-3\right)\left(x+4\right) e \left(x+3\right)\left(x+4\right) é \left(x-3\right)\left(x+3\right)\left(x+4\right). Multiplica \frac{x+1}{\left(x-3\right)\left(x+4\right)} por \frac{x+3}{x+3}. Multiplica \frac{x-4}{\left(x+3\right)\left(x+4\right)} por \frac{x-3}{x-3}.
\frac{\left(x+1\right)\left(x+3\right)-\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Dado que \frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} e \frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{x^{2}+3x+x+3-x^{2}+3x+4x-12}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Fai as multiplicacións en \left(x+1\right)\left(x+3\right)-\left(x-4\right)\left(x-3\right).
\frac{11x-9}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Combina como termos en x^{2}+3x+x+3-x^{2}+3x+4x-12.
\frac{11x-9}{x^{3}+4x^{2}-9x-36}
Expande \left(x-3\right)\left(x+3\right)\left(x+4\right).
\frac{x+1}{\left(x-3\right)\left(x+4\right)}-\frac{x-4}{\left(x+3\right)\left(x+4\right)}
Factoriza x^{2}+x-12. Factoriza x^{2}+7x+12.
\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}-\frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-3\right)\left(x+4\right) e \left(x+3\right)\left(x+4\right) é \left(x-3\right)\left(x+3\right)\left(x+4\right). Multiplica \frac{x+1}{\left(x-3\right)\left(x+4\right)} por \frac{x+3}{x+3}. Multiplica \frac{x-4}{\left(x+3\right)\left(x+4\right)} por \frac{x-3}{x-3}.
\frac{\left(x+1\right)\left(x+3\right)-\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Dado que \frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} e \frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{x^{2}+3x+x+3-x^{2}+3x+4x-12}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Fai as multiplicacións en \left(x+1\right)\left(x+3\right)-\left(x-4\right)\left(x-3\right).
\frac{11x-9}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Combina como termos en x^{2}+3x+x+3-x^{2}+3x+4x-12.
\frac{11x-9}{x^{3}+4x^{2}-9x-36}
Expande \left(x-3\right)\left(x+3\right)\left(x+4\right).