Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}}{x-\frac{1}{x}})
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x^{2} por \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}+1}{x^{2}}}{x-\frac{1}{x}})
Dado que \frac{x^{2}x^{2}}{x^{2}} e \frac{1}{x^{2}} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{x-\frac{1}{x}})
Fai as multiplicacións en x^{2}x^{2}+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx}{x}-\frac{1}{x}})
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x por \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx-1}{x}})
Dado que \frac{xx}{x} e \frac{1}{x} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{x^{2}-1}{x}})
Fai as multiplicacións en xx-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{4}+1\right)x}{x^{2}\left(x^{2}-1\right)})
Divide \frac{x^{4}+1}{x^{2}} entre \frac{x^{2}-1}{x} mediante a multiplicación de \frac{x^{4}+1}{x^{2}} polo recíproco de \frac{x^{2}-1}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x\left(x^{2}-1\right)})
Anula x no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x^{3}-x})
Usa a propiedade distributiva para multiplicar x por x^{2}-1.
\frac{\left(x^{3}-x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+1)-\left(x^{4}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-x^{1})}{\left(x^{3}-x^{1}\right)^{2}}
Para dúas funcións diferenciables calquera, a derivada do cociente de dúas funcións é o denominador multiplicado pola derivada do numerador menos o numerador multiplicado pola derivada do denominador, e todo dividido polo denominador ao cadrado.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{4-1}-\left(x^{4}+1\right)\left(3x^{3-1}-x^{1-1}\right)}{\left(x^{3}-x^{1}\right)^{2}}
A derivada dun polinomio é a suma das derivadas dos seus termos. A derivada de calquera termo constante é 0. A derivada de ax^{n} é nax^{n-1}.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Simplifica.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Multiplica x^{3}-x^{1} por 4x^{3}.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}\times 3x^{2}+x^{4}\left(-1\right)x^{0}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Multiplica x^{4}+1 por 3x^{2}-x^{0}.
\frac{4x^{3+3}-4x^{1+3}-\left(3x^{4+2}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Para multiplicar potencias da mesma base, suma os seus expoñentes.
\frac{4x^{6}-4x^{4}-\left(3x^{6}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Simplifica.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Combina termos semellantes.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x\right)^{2}}
Para calquera termo t, t^{1}=t.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-1\right)}{\left(x^{3}-x\right)^{2}}
Para calquera termo t agás 0, t^{0}=1.