Resolver n (complex solution)
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
x\neq \frac{1+\sqrt{23}i}{6}\text{ and }x\neq \frac{-\sqrt{23}i+1}{6}\text{ and }x\neq -1\text{ and }x\neq 1
Resolver n
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
|x|\neq 1
Resolver x (complex solution)
\left\{\begin{matrix}x=\frac{-\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{1}{3}\\x=\frac{\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq -\frac{2}{3}\text{ and }n\neq \frac{1}{3}\text{ and }n\neq \frac{3}{2}\\x=\frac{1}{8}\text{, }&n=\frac{1}{3}\end{matrix}\right.
Resolver x
\left\{\begin{matrix}x=\frac{-\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{1}{3}\text{ and }n\geq \frac{9-4\sqrt{41}}{23}\text{ and }n\leq \frac{4\sqrt{41}+9}{23}\\x=\frac{\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{3}{2}\text{ and }n\neq \frac{1}{3}\text{ and }n\geq \frac{9-4\sqrt{41}}{23}\text{ and }n\leq \frac{4\sqrt{41}+9}{23}\text{ and }n\neq -\frac{2}{3}\\x=\frac{1}{8}\text{, }&n=\frac{1}{3}\end{matrix}\right.
Gráfico
Compartir
Copiado a portapapeis
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Multiplica ambos lados da ecuación por \left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Usa a propiedade distributiva para multiplicar 2n por x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Usa a propiedade distributiva para multiplicar 2nx-2n por x+1 e combina os termos semellantes.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Considera \left(x-1\right)\left(x+1\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleva 1 ao cadrado.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Resta 2nx^{2} en ambos lados.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Combina 5nx^{2} e -2nx^{2} para obter 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Engadir 2n en ambos lados.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Engadir 5x en ambos lados.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Engadir 1 en ambos lados.
3nx^{2}-nx+2n=x^{2}+5x
Suma -1 e 1 para obter 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Combina todos os termos que conteñan n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Divide ambos lados entre 3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
A división entre 3x^{2}-x+2 desfai a multiplicación por 3x^{2}-x+2.
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Multiplica ambos lados da ecuación por \left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Usa a propiedade distributiva para multiplicar 2n por x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Usa a propiedade distributiva para multiplicar 2nx-2n por x+1 e combina os termos semellantes.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Considera \left(x-1\right)\left(x+1\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleva 1 ao cadrado.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Resta 2nx^{2} en ambos lados.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Combina 5nx^{2} e -2nx^{2} para obter 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Engadir 2n en ambos lados.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Engadir 5x en ambos lados.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Engadir 1 en ambos lados.
3nx^{2}-nx+2n=x^{2}+5x
Suma -1 e 1 para obter 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Combina todos os termos que conteñan n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Divide ambos lados entre 3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
A división entre 3x^{2}-x+2 desfai a multiplicación por 3x^{2}-x+2.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}