Calcular
\frac{7x-13}{\left(x-7\right)\left(x+2\right)}
Diferenciar w.r.t. x
\frac{-7x^{2}+26x-163}{\left(\left(x-7\right)\left(x+2\right)\right)^{2}}
Gráfico
Compartir
Copiado a portapapeis
\frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)}+\frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de x-7 e x+2 é \left(x-7\right)\left(x+2\right). Multiplica \frac{4}{x-7} por \frac{x+2}{x+2}. Multiplica \frac{3}{x+2} por \frac{x-7}{x-7}.
\frac{4\left(x+2\right)+3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)}
Dado que \frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)} e \frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{4x+8+3x-21}{\left(x-7\right)\left(x+2\right)}
Fai as multiplicacións en 4\left(x+2\right)+3\left(x-7\right).
\frac{7x-13}{\left(x-7\right)\left(x+2\right)}
Combina como termos en 4x+8+3x-21.
\frac{7x-13}{x^{2}-5x-14}
Expande \left(x-7\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)}+\frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)})
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de x-7 e x+2 é \left(x-7\right)\left(x+2\right). Multiplica \frac{4}{x-7} por \frac{x+2}{x+2}. Multiplica \frac{3}{x+2} por \frac{x-7}{x-7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)+3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)})
Dado que \frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)} e \frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+8+3x-21}{\left(x-7\right)\left(x+2\right)})
Fai as multiplicacións en 4\left(x+2\right)+3\left(x-7\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-13}{\left(x-7\right)\left(x+2\right)})
Combina como termos en 4x+8+3x-21.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-13}{x^{2}+2x-7x-14})
Aplicar a propiedade distributiva multiplicando cada termo de x-7 por cada termo de x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-13}{x^{2}-5x-14})
Combina 2x e -7x para obter -5x.
\frac{\left(x^{2}-5x^{1}-14\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}-13)-\left(7x^{1}-13\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-5x^{1}-14)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Para dúas funcións diferenciables calquera, a derivada do cociente de dúas funcións é o denominador multiplicado pola derivada do numerador menos o numerador multiplicado pola derivada do denominador, e todo dividido polo denominador ao cadrado.
\frac{\left(x^{2}-5x^{1}-14\right)\times 7x^{1-1}-\left(7x^{1}-13\right)\left(2x^{2-1}-5x^{1-1}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
A derivada dun polinomio é a suma das derivadas dos seus termos. A derivada de calquera termo constante é 0. A derivada de ax^{n} é nax^{n-1}.
\frac{\left(x^{2}-5x^{1}-14\right)\times 7x^{0}-\left(7x^{1}-13\right)\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Simplifica.
\frac{x^{2}\times 7x^{0}-5x^{1}\times 7x^{0}-14\times 7x^{0}-\left(7x^{1}-13\right)\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Multiplica x^{2}-5x^{1}-14 por 7x^{0}.
\frac{x^{2}\times 7x^{0}-5x^{1}\times 7x^{0}-14\times 7x^{0}-\left(7x^{1}\times 2x^{1}+7x^{1}\left(-5\right)x^{0}-13\times 2x^{1}-13\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Multiplica 7x^{1}-13 por 2x^{1}-5x^{0}.
\frac{7x^{2}-5\times 7x^{1}-14\times 7x^{0}-\left(7\times 2x^{1+1}+7\left(-5\right)x^{1}-13\times 2x^{1}-13\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Para multiplicar potencias da mesma base, suma os seus expoñentes.
\frac{7x^{2}-35x^{1}-98x^{0}-\left(14x^{2}-35x^{1}-26x^{1}+65x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Simplifica.
\frac{-7x^{2}+26x^{1}-163x^{0}}{\left(x^{2}-5x^{1}-14\right)^{2}}
Combina termos semellantes.
\frac{-7x^{2}+26x-163x^{0}}{\left(x^{2}-5x-14\right)^{2}}
Para calquera termo t, t^{1}=t.
\frac{-7x^{2}+26x-163}{\left(x^{2}-5x-14\right)^{2}}
Para calquera termo t agás 0, t^{0}=1.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}