Calcular
10-4\sqrt{5}\approx 1.05572809
Compartir
Copiado a portapapeis
\frac{2\sqrt{5}\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}
Racionaliza o denominador de \frac{2\sqrt{5}}{2+\sqrt{5}} mediante a multiplicación do numerador e o denominador por 2-\sqrt{5}.
\frac{2\sqrt{5}\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Considera \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{5}\left(2-\sqrt{5}\right)}{4-5}
Eleva 2 ao cadrado. Eleva \sqrt{5} ao cadrado.
\frac{2\sqrt{5}\left(2-\sqrt{5}\right)}{-1}
Resta 5 de 4 para obter -1.
-2\sqrt{5}\left(2-\sqrt{5}\right)
Calquera número dividido entre -1 ten como resultado o seu contrario.
-\left(4\sqrt{5}-2\left(\sqrt{5}\right)^{2}\right)
Usa a propiedade distributiva para multiplicar 2\sqrt{5} por 2-\sqrt{5}.
-\left(4\sqrt{5}-2\times 5\right)
O cadrado de \sqrt{5} é 5.
-\left(4\sqrt{5}-10\right)
Multiplica -2 e 5 para obter -10.
-4\sqrt{5}-\left(-10\right)
Para calcular o oposto de 4\sqrt{5}-10, calcula o oposto de cada termo.
-4\sqrt{5}+10
O contrario de -10 é 10.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}