Calcular
\frac{29-4x}{x-7}
Diferenciar w.r.t. x
-\frac{1}{\left(x-7\right)^{2}}
Gráfico
Compartir
Copiado a portapapeis
\frac{1}{x-7}-\frac{4\left(x-7\right)}{x-7}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 4 por \frac{x-7}{x-7}.
\frac{1-4\left(x-7\right)}{x-7}
Dado que \frac{1}{x-7} e \frac{4\left(x-7\right)}{x-7} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{1-4x+28}{x-7}
Fai as multiplicacións en 1-4\left(x-7\right).
\frac{29-4x}{x-7}
Combina como termos en 1-4x+28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-7}-\frac{4\left(x-7\right)}{x-7})
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 4 por \frac{x-7}{x-7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-4\left(x-7\right)}{x-7})
Dado que \frac{1}{x-7} e \frac{4\left(x-7\right)}{x-7} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-4x+28}{x-7})
Fai as multiplicacións en 1-4\left(x-7\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{29-4x}{x-7})
Combina como termos en 1-4x+28.
\frac{\left(x^{1}-7\right)\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{1}+29)-\left(-4x^{1}+29\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-7)}{\left(x^{1}-7\right)^{2}}
Para dúas funcións diferenciables calquera, a derivada do cociente de dúas funcións é o denominador multiplicado pola derivada do numerador menos o numerador multiplicado pola derivada do denominador, e todo dividido polo denominador ao cadrado.
\frac{\left(x^{1}-7\right)\left(-4\right)x^{1-1}-\left(-4x^{1}+29\right)x^{1-1}}{\left(x^{1}-7\right)^{2}}
A derivada dun polinomio é a suma das derivadas dos seus termos. A derivada de calquera termo constante é 0. A derivada de ax^{n} é nax^{n-1}.
\frac{\left(x^{1}-7\right)\left(-4\right)x^{0}-\left(-4x^{1}+29\right)x^{0}}{\left(x^{1}-7\right)^{2}}
Fai o cálculo.
\frac{x^{1}\left(-4\right)x^{0}-7\left(-4\right)x^{0}-\left(-4x^{1}x^{0}+29x^{0}\right)}{\left(x^{1}-7\right)^{2}}
Expande usando a propiedade distributiva.
\frac{-4x^{1}-7\left(-4\right)x^{0}-\left(-4x^{1}+29x^{0}\right)}{\left(x^{1}-7\right)^{2}}
Para multiplicar potencias da mesma base, suma os seus expoñentes.
\frac{-4x^{1}+28x^{0}-\left(-4x^{1}+29x^{0}\right)}{\left(x^{1}-7\right)^{2}}
Fai o cálculo.
\frac{-4x^{1}+28x^{0}-\left(-4x^{1}\right)-29x^{0}}{\left(x^{1}-7\right)^{2}}
Elimina parénteses innecesarias.
\frac{\left(-4-\left(-4\right)\right)x^{1}+\left(28-29\right)x^{0}}{\left(x^{1}-7\right)^{2}}
Combina termos semellantes.
\frac{-x^{0}}{\left(x^{1}-7\right)^{2}}
Resta -4 a -4 e 29 a 28.
\frac{-x^{0}}{\left(x-7\right)^{2}}
Para calquera termo t, t^{1}=t.
\frac{-1}{\left(x-7\right)^{2}}
Para calquera termo t agás 0, t^{0}=1.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}