Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Factoriza x^{2}-1. Factoriza x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-1\right)\left(x+1\right) e \left(x-1\right)\left(x+4\right) é \left(x-1\right)\left(x+1\right)\left(x+4\right). Multiplica \frac{1}{\left(x-1\right)\left(x+1\right)} por \frac{x+4}{x+4}. Multiplica \frac{2}{\left(x-1\right)\left(x+4\right)} por \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Dado que \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} e \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Fai as multiplicacións en x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Combina como termos en x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
Factoriza x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-1\right)\left(x+1\right)\left(x+4\right) e \left(x-3\right)\left(x+1\right) é \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). Multiplica \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} por \frac{x-3}{x-3}. Multiplica \frac{1}{\left(x-3\right)\left(x+1\right)} por \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Dado que \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} e \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Fai as multiplicacións en \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Combina como termos en -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
Expande \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right).