Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x^{2}-64=0
Multiplica ambos lados por 2.
\left(x-8\right)\left(x+8\right)=0
Considera x^{2}-64. Reescribe x^{2}-64 como x^{2}-8^{2}. Pódese factorizar a diferenza dos cadrados usando a regra: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=8 x=-8
Para atopar as solucións de ecuación, resolve x-8=0 e x+8=0.
\frac{1}{2}x^{2}=32
Engadir 32 en ambos lados. Calquera valor máis cero é igual ao valor.
x^{2}=32\times 2
Multiplica ambos lados por 2, o recíproco de \frac{1}{2}.
x^{2}=64
Multiplica 32 e 2 para obter 64.
x=8 x=-8
Obtén a raíz cadrada de ambos lados da ecuación.
\frac{1}{2}x^{2}-32=0
As ecuacións cadráticas como estas, cun termo x^{2} pero sen termo x, pódense resolver coa fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, unha vez convertidas en forma estándar: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\left(-32\right)}}{2\times \frac{1}{2}}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por \frac{1}{2}, b por 0 e c por -32 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2}\left(-32\right)}}{2\times \frac{1}{2}}
Eleva 0 ao cadrado.
x=\frac{0±\sqrt{-2\left(-32\right)}}{2\times \frac{1}{2}}
Multiplica -4 por \frac{1}{2}.
x=\frac{0±\sqrt{64}}{2\times \frac{1}{2}}
Multiplica -2 por -32.
x=\frac{0±8}{2\times \frac{1}{2}}
Obtén a raíz cadrada de 64.
x=\frac{0±8}{1}
Multiplica 2 por \frac{1}{2}.
x=8
Agora resolve a ecuación x=\frac{0±8}{1} se ± é máis.
x=-8
Agora resolve a ecuación x=\frac{0±8}{1} se ± é menos.
x=8 x=-8
A ecuación está resolta.