Saltar ao contido principal
Diferenciar w.r.t. z
Tick mark Image
Calcular
Tick mark Image

Compartir

\frac{\mathrm{d}}{\mathrm{d}z}(\cos(z))=\left(\lim_{h\to 0}\frac{\cos(z+h)-\cos(z)}{h}\right)
Para unha función f\left(x\right), a derivada é o límite de \frac{f\left(x+h\right)-f\left(x\right)}{h} cando h vai a 0, se ese límite existe.
\lim_{h\to 0}\frac{\cos(z+h)-\cos(z)}{h}
Usa a fórmula de suma para o coseno.
\lim_{h\to 0}\frac{\cos(z)\left(\cos(h)-1\right)-\sin(z)\sin(h)}{h}
Factoriza \cos(z).
\left(\lim_{h\to 0}\cos(z)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(z)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Reescribe o límite.
\cos(z)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(z)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Usa o feito de que z é unha constante ao calcular os límites cando h vai a 0.
\cos(z)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(z)
O límite \lim_{z\to 0}\frac{\sin(z)}{z} é 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Para calcular o límite \lim_{h\to 0}\frac{\cos(h)-1}{h}, primeiro multiplica o numerador e o denominador por \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multiplica \cos(h)+1 por \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Usa a identidade pitagórica.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Reescribe o límite.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
O límite \lim_{z\to 0}\frac{\sin(z)}{z} é 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Usa o feito de que \frac{\sin(h)}{\cos(h)+1} é continuo en 0.
-\sin(z)
Substitúe o valor 0 na expresión \cos(z)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(z).