Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{3\left(38-12\sqrt{2}\right)}{\left(38+12\sqrt{2}\right)\left(38-12\sqrt{2}\right)}+\frac{5}{38-12\sqrt{2}}
Racionaliza o denominador de \frac{3}{38+12\sqrt{2}} mediante a multiplicación do numerador e o denominador por 38-12\sqrt{2}.
\frac{3\left(38-12\sqrt{2}\right)}{38^{2}-\left(12\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Considera \left(38+12\sqrt{2}\right)\left(38-12\sqrt{2}\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1444-\left(12\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Calcula 38 á potencia de 2 e obtén 1444.
\frac{3\left(38-12\sqrt{2}\right)}{1444-12^{2}\left(\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Expande \left(12\sqrt{2}\right)^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1444-144\left(\sqrt{2}\right)^{2}}+\frac{5}{38-12\sqrt{2}}
Calcula 12 á potencia de 2 e obtén 144.
\frac{3\left(38-12\sqrt{2}\right)}{1444-144\times 2}+\frac{5}{38-12\sqrt{2}}
O cadrado de \sqrt{2} é 2.
\frac{3\left(38-12\sqrt{2}\right)}{1444-288}+\frac{5}{38-12\sqrt{2}}
Multiplica 144 e 2 para obter 288.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5}{38-12\sqrt{2}}
Resta 288 de 1444 para obter 1156.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{\left(38-12\sqrt{2}\right)\left(38+12\sqrt{2}\right)}
Racionaliza o denominador de \frac{5}{38-12\sqrt{2}} mediante a multiplicación do numerador e o denominador por 38+12\sqrt{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{38^{2}-\left(-12\sqrt{2}\right)^{2}}
Considera \left(38-12\sqrt{2}\right)\left(38+12\sqrt{2}\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-\left(-12\sqrt{2}\right)^{2}}
Calcula 38 á potencia de 2 e obtén 1444.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-\left(-12\right)^{2}\left(\sqrt{2}\right)^{2}}
Expande \left(-12\sqrt{2}\right)^{2}.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-144\left(\sqrt{2}\right)^{2}}
Calcula -12 á potencia de 2 e obtén 144.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-144\times 2}
O cadrado de \sqrt{2} é 2.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1444-288}
Multiplica 144 e 2 para obter 288.
\frac{3\left(38-12\sqrt{2}\right)}{1156}+\frac{5\left(38+12\sqrt{2}\right)}{1156}
Resta 288 de 1444 para obter 1156.
\frac{3\left(38-12\sqrt{2}\right)+5\left(38+12\sqrt{2}\right)}{1156}
Dado que \frac{3\left(38-12\sqrt{2}\right)}{1156} e \frac{5\left(38+12\sqrt{2}\right)}{1156} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{114-36\sqrt{2}+190+60\sqrt{2}}{1156}
Fai as multiplicacións en 3\left(38-12\sqrt{2}\right)+5\left(38+12\sqrt{2}\right).
\frac{304+24\sqrt{2}}{1156}
Fai os cálculos en 114-36\sqrt{2}+190+60\sqrt{2}.