Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+b=12 ab=1\times 36=36
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar x^{2}+ax+bx+36 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,36 2,18 3,12 4,9 6,6
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil a agus b araon dearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Áirigh an tsuim do gach péire.
a=6 b=6
Is é an réiteach ná an péire a thugann an tsuim 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
Athscríobh x^{2}+12x+36 mar \left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
Fág x as an áireamh sa chead ghrúpa agus 6 sa dara grúpa.
\left(x+6\right)\left(x+6\right)
Fág an téarma coitianta x+6 as an áireamh ag úsáid airí dháiligh.
\left(x+6\right)^{2}
Athscríobh é mar chearnóg dhéthéarmach.
factor(x^{2}+12x+36)
Tá an tríthéarmach seo i bhfoirm cearnóige tríthéarmaí, méadaithe faoi fhachtóir coiteann b’fhéidir. Is féidir cearnóga tríthéarmacha a fhachtóiriú trí fhréamhacha cearnacha na dtéarmaí chun tosaigh agus na dtéarmaí chun deiridh a fháil.
\sqrt{36}=6
Faigh fréamh chearnach an téarma chun deiridh, 36.
\left(x+6\right)^{2}
Is ionann an chearnóg thríthéarmach agus cearnóg an déthéarmaigh arb é suim nó difríocht fhréamhacha cearnacha na dtéarmaí chun tosaigh agus chun deiridh, agus tá an comhartha dearbhaithe ag comhartha théarma láir na cearnóige tríthéarmaí.
x^{2}+12x+36=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
Cearnóg 12.
x=\frac{-12±\sqrt{144-144}}{2}
Méadaigh -4 faoi 36.
x=\frac{-12±\sqrt{0}}{2}
Suimigh 144 le -144?
x=\frac{-12±0}{2}
Tóg fréamh chearnach 0.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir -6 in ionad x_{1} agus -6 in ionad x_{2}.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.