Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+b=11 ab=1\left(-210\right)=-210
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar x^{2}+ax+bx-210 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Áirigh an tsuim do gach péire.
a=-10 b=21
Is é an réiteach ná an péire a thugann an tsuim 11.
\left(x^{2}-10x\right)+\left(21x-210\right)
Athscríobh x^{2}+11x-210 mar \left(x^{2}-10x\right)+\left(21x-210\right).
x\left(x-10\right)+21\left(x-10\right)
Fág x as an áireamh sa chead ghrúpa agus 21 sa dara grúpa.
\left(x-10\right)\left(x+21\right)
Fág an téarma coitianta x-10 as an áireamh ag úsáid airí dháiligh.
x^{2}+11x-210=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\left(-210\right)}}{2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-11±\sqrt{121-4\left(-210\right)}}{2}
Cearnóg 11.
x=\frac{-11±\sqrt{121+840}}{2}
Méadaigh -4 faoi -210.
x=\frac{-11±\sqrt{961}}{2}
Suimigh 121 le 840?
x=\frac{-11±31}{2}
Tóg fréamh chearnach 961.
x=\frac{20}{2}
Réitigh an chothromóid x=\frac{-11±31}{2} nuair is ionann ± agus plus. Suimigh -11 le 31?
x=10
Roinn 20 faoi 2.
x=-\frac{42}{2}
Réitigh an chothromóid x=\frac{-11±31}{2} nuair is ionann ± agus míneas. Dealaigh 31 ó -11.
x=-21
Roinn -42 faoi 2.
x^{2}+11x-210=\left(x-10\right)\left(x-\left(-21\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir 10 in ionad x_{1} agus -21 in ionad x_{2}.
x^{2}+11x-210=\left(x-10\right)\left(x+21\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.