Réitigh do f.
\left\{\begin{matrix}f=0\text{, }&N\neq 0\\f\in \mathrm{C}\text{, }&\left(n=-j^{-\frac{1}{2}}N\text{ or }n=j^{-\frac{1}{2}}N\right)\text{ and }j\neq 0\text{ and }N\neq 0\end{matrix}\right.
Réitigh do N.
\left\{\begin{matrix}N=-\sqrt{j}n\text{; }N=\sqrt{j}n\text{, }&j\neq 0\text{ and }n\neq 0\\N\neq 0\text{, }&f=0\end{matrix}\right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
fiN=nifj\times \frac{n}{N}
Méadaigh an dá thaobh den chothromóid faoi N.
fiN=\frac{nn}{N}ifj
Scríobh n\times \frac{n}{N} mar chodán aonair.
fiN=\frac{n^{2}}{N}ifj
Méadaigh n agus n chun n^{2} a fháil.
fiN=\frac{n^{2}f}{N}ij
Scríobh \frac{n^{2}}{N}f mar chodán aonair.
fiN=\frac{n^{2}fj}{N}i
Scríobh \frac{n^{2}f}{N}j mar chodán aonair.
fiN-\frac{n^{2}fj}{N}i=0
Bain \frac{n^{2}fj}{N}i ón dá thaobh.
fiNN-n^{2}fji=0
Méadaigh an dá thaobh den chothromóid faoi N.
iNNf-ifjn^{2}=0
Athordaigh na téarmaí.
iN^{2}f-ifjn^{2}=0
Méadaigh N agus N chun N^{2} a fháil.
\left(iN^{2}-ijn^{2}\right)f=0
Comhcheangail na téarmaí ar fad ina bhfuil f.
f=0
Roinn 0 faoi iN^{2}-ijn^{2}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}