Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x^{2}-10x+25
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=-10 ab=1\times 25=25
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar x^{2}+ax+bx+25 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,-25 -5,-5
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil a agus b araon diúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 25.
-1-25=-26 -5-5=-10
Áirigh an tsuim do gach péire.
a=-5 b=-5
Is é an réiteach ná an péire a thugann an tsuim -10.
\left(x^{2}-5x\right)+\left(-5x+25\right)
Athscríobh x^{2}-10x+25 mar \left(x^{2}-5x\right)+\left(-5x+25\right).
x\left(x-5\right)-5\left(x-5\right)
Fág x as an áireamh sa chead ghrúpa agus -5 sa dara grúpa.
\left(x-5\right)\left(x-5\right)
Fág an téarma coitianta x-5 as an áireamh ag úsáid airí dháiligh.
\left(x-5\right)^{2}
Athscríobh é mar chearnóg dhéthéarmach.
factor(x^{2}-10x+25)
Tá an tríthéarmach seo i bhfoirm cearnóige tríthéarmaí, méadaithe faoi fhachtóir coiteann b’fhéidir. Is féidir cearnóga tríthéarmacha a fhachtóiriú trí fhréamhacha cearnacha na dtéarmaí chun tosaigh agus na dtéarmaí chun deiridh a fháil.
\sqrt{25}=5
Faigh fréamh chearnach an téarma chun deiridh, 25.
\left(x-5\right)^{2}
Is ionann an chearnóg thríthéarmach agus cearnóg an déthéarmaigh arb é suim nó difríocht fhréamhacha cearnacha na dtéarmaí chun tosaigh agus chun deiridh, agus tá an comhartha dearbhaithe ag comhartha théarma láir na cearnóige tríthéarmaí.
x^{2}-10x+25=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Cearnóg -10.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Méadaigh -4 faoi 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
Suimigh 100 le -100?
x=\frac{-\left(-10\right)±0}{2}
Tóg fréamh chearnach 0.
x=\frac{10±0}{2}
Tá 10 urchomhairleach le -10.
x^{2}-10x+25=\left(x-5\right)\left(x-5\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir 5 in ionad x_{1} agus 5 in ionad x_{2}.