Luacháil
\sqrt{2}\left(-\frac{3}{4}-\frac{3}{4}i\right)\approx -1.060660172-1.060660172i
Fíorpháirt
-\frac{3 \sqrt{2}}{4} = -1.0606601717798214
Tráth na gCeist
Complex Number
5 fadhbanna cosúil le:
- \frac { \frac { 3 } { 2 } + \frac { 3 i } { 2 } } { \sqrt { 2 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
-\frac{\frac{3}{2}+\frac{3}{2}i}{\sqrt{2}}
Roinn 3i faoi 2 chun \frac{3}{2}i a fháil.
-\frac{\left(\frac{3}{2}+\frac{3}{2}i\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2} chun ainmneoir \frac{\frac{3}{2}+\frac{3}{2}i}{\sqrt{2}} a thiontú in uimhir chóimheasta.
-\frac{\left(\frac{3}{2}+\frac{3}{2}i\right)\sqrt{2}}{2}
Is é 2 uimhir chearnach \sqrt{2}.
-\left(\frac{3}{4}+\frac{3}{4}i\right)\sqrt{2}
Roinn \left(\frac{3}{2}+\frac{3}{2}i\right)\sqrt{2} faoi 2 chun \left(\frac{3}{4}+\frac{3}{4}i\right)\sqrt{2} a fháil.
\left(-\frac{3}{4}-\frac{3}{4}i\right)\sqrt{2}
Méadaigh -1 agus \frac{3}{4}+\frac{3}{4}i chun -\frac{3}{4}-\frac{3}{4}i a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}