Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x^{2}-5x+2=5
Úsáid an t-airí dáileach chun x-2 a mhéadú faoi 2x-1 agus chun téarmaí comhchosúla a chumasc.
2x^{2}-5x+2-5=0
Bain 5 ón dá thaobh.
2x^{2}-5x-3=0
Dealaigh 5 ó 2 chun -3 a fháil.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 2 in ionad a, -5 in ionad b, agus -3 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Cearnóg -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Méadaigh -8 faoi -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Suimigh 25 le 24?
x=\frac{-\left(-5\right)±7}{2\times 2}
Tóg fréamh chearnach 49.
x=\frac{5±7}{2\times 2}
Tá 5 urchomhairleach le -5.
x=\frac{5±7}{4}
Méadaigh 2 faoi 2.
x=\frac{12}{4}
Réitigh an chothromóid x=\frac{5±7}{4} nuair is ionann ± agus plus. Suimigh 5 le 7?
x=3
Roinn 12 faoi 4.
x=-\frac{2}{4}
Réitigh an chothromóid x=\frac{5±7}{4} nuair is ionann ± agus míneas. Dealaigh 7 ó 5.
x=-\frac{1}{2}
Laghdaigh an codán \frac{-2}{4} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
x=3 x=-\frac{1}{2}
Tá an chothromóid réitithe anois.
2x^{2}-5x+2=5
Úsáid an t-airí dáileach chun x-2 a mhéadú faoi 2x-1 agus chun téarmaí comhchosúla a chumasc.
2x^{2}-5x=5-2
Bain 2 ón dá thaobh.
2x^{2}-5x=3
Dealaigh 2 ó 5 chun 3 a fháil.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Roinn an dá thaobh faoi 2.
x^{2}-\frac{5}{2}x=\frac{3}{2}
Má roinntear é faoi 2 cuirtear an iolrúchán faoi 2 ar ceal.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Roinn -\frac{5}{2}, comhéifeacht an téarma x, faoi 2 chun -\frac{5}{4} a fháil. Ansin suimigh uimhir chearnach -\frac{5}{4} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Cearnaigh -\frac{5}{4} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Suimigh \frac{3}{2} le \frac{25}{16} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
Fachtóirigh x^{2}-\frac{5}{2}x+\frac{25}{16}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Simpligh.
x=3 x=-\frac{1}{2}
Cuir \frac{5}{4} leis an dá thaobh den chothromóid.