Réitigh do x_0.
x_{0}=2\sqrt{58}+9\approx 24.231546212
x_{0}=9-2\sqrt{58}\approx -6.231546212
Roinn
Cóipeáladh go dtí an ghearrthaisce
x_{0}^{2}+2x_{0}+1-4^{2}=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(x_{0}+1\right)^{2} a leathnú.
x_{0}^{2}+2x_{0}+1-16=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Ríomh cumhacht 4 de 2 agus faigh 16.
x_{0}^{2}+2x_{0}-15=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Dealaigh 16 ó 1 chun -15 a fháil.
x_{0}^{2}+2x_{0}-15=\left(\frac{0-x_{0}-11}{\sqrt{2}}\right)^{2}
Méadaigh 1 agus 0 chun 0 a fháil.
x_{0}^{2}+2x_{0}-15=\left(\frac{-11-x_{0}}{\sqrt{2}}\right)^{2}
Dealaigh 11 ó 0 chun -11 a fháil.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2} chun ainmneoir \frac{-11-x_{0}}{\sqrt{2}} a thiontú in uimhir chóimheasta.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{2}\right)^{2}
Is é 2 uimhir chearnach \sqrt{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}}{2^{2}}
Chun \frac{\left(-11-x_{0}\right)\sqrt{2}}{2} a iolrú i gcumhacht, iolraigh an t-uimhreoir agus an t-ainmneoir araon i gcumhacht agus déan iad a roinnt ansin.
x_{0}^{2}+2x_{0}-15=\frac{\left(-11-x_{0}\right)^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Fairsingigh \left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(-11-x_{0}\right)^{2} a leathnú.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{2^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{4}
Ríomh cumhacht 2 de 2 agus faigh 4.
x_{0}^{2}+2x_{0}-15=\left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2}
Roinn \left(121+22x_{0}+x_{0}^{2}\right)\times 2 faoi 4 chun \left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2} a fháil.
x_{0}^{2}+2x_{0}-15=\frac{121}{2}+11x_{0}+\frac{1}{2}x_{0}^{2}
Úsáid an t-airí dáileach chun 121+22x_{0}+x_{0}^{2} a mhéadú faoi \frac{1}{2}.
x_{0}^{2}+2x_{0}-15-\frac{121}{2}=11x_{0}+\frac{1}{2}x_{0}^{2}
Bain \frac{121}{2} ón dá thaobh.
x_{0}^{2}+2x_{0}-\frac{151}{2}=11x_{0}+\frac{1}{2}x_{0}^{2}
Dealaigh \frac{121}{2} ó -15 chun -\frac{151}{2} a fháil.
x_{0}^{2}+2x_{0}-\frac{151}{2}-11x_{0}=\frac{1}{2}x_{0}^{2}
Bain 11x_{0} ón dá thaobh.
x_{0}^{2}-9x_{0}-\frac{151}{2}=\frac{1}{2}x_{0}^{2}
Comhcheangail 2x_{0} agus -11x_{0} chun -9x_{0} a fháil.
x_{0}^{2}-9x_{0}-\frac{151}{2}-\frac{1}{2}x_{0}^{2}=0
Bain \frac{1}{2}x_{0}^{2} ón dá thaobh.
\frac{1}{2}x_{0}^{2}-9x_{0}-\frac{151}{2}=0
Comhcheangail x_{0}^{2} agus -\frac{1}{2}x_{0}^{2} chun \frac{1}{2}x_{0}^{2} a fháil.
x_{0}=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times \frac{1}{2}\left(-\frac{151}{2}\right)}}{2\times \frac{1}{2}}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir \frac{1}{2} in ionad a, -9 in ionad b, agus -\frac{151}{2} in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x_{0}=\frac{-\left(-9\right)±\sqrt{81-4\times \frac{1}{2}\left(-\frac{151}{2}\right)}}{2\times \frac{1}{2}}
Cearnóg -9.
x_{0}=\frac{-\left(-9\right)±\sqrt{81-2\left(-\frac{151}{2}\right)}}{2\times \frac{1}{2}}
Méadaigh -4 faoi \frac{1}{2}.
x_{0}=\frac{-\left(-9\right)±\sqrt{81+151}}{2\times \frac{1}{2}}
Méadaigh -2 faoi -\frac{151}{2}.
x_{0}=\frac{-\left(-9\right)±\sqrt{232}}{2\times \frac{1}{2}}
Suimigh 81 le 151?
x_{0}=\frac{-\left(-9\right)±2\sqrt{58}}{2\times \frac{1}{2}}
Tóg fréamh chearnach 232.
x_{0}=\frac{9±2\sqrt{58}}{2\times \frac{1}{2}}
Tá 9 urchomhairleach le -9.
x_{0}=\frac{9±2\sqrt{58}}{1}
Méadaigh 2 faoi \frac{1}{2}.
x_{0}=\frac{2\sqrt{58}+9}{1}
Réitigh an chothromóid x_{0}=\frac{9±2\sqrt{58}}{1} nuair is ionann ± agus plus. Suimigh 9 le 2\sqrt{58}?
x_{0}=2\sqrt{58}+9
Roinn 9+2\sqrt{58} faoi 1.
x_{0}=\frac{9-2\sqrt{58}}{1}
Réitigh an chothromóid x_{0}=\frac{9±2\sqrt{58}}{1} nuair is ionann ± agus míneas. Dealaigh 2\sqrt{58} ó 9.
x_{0}=9-2\sqrt{58}
Roinn 9-2\sqrt{58} faoi 1.
x_{0}=2\sqrt{58}+9 x_{0}=9-2\sqrt{58}
Tá an chothromóid réitithe anois.
x_{0}^{2}+2x_{0}+1-4^{2}=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(x_{0}+1\right)^{2} a leathnú.
x_{0}^{2}+2x_{0}+1-16=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Ríomh cumhacht 4 de 2 agus faigh 16.
x_{0}^{2}+2x_{0}-15=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Dealaigh 16 ó 1 chun -15 a fháil.
x_{0}^{2}+2x_{0}-15=\left(\frac{0-x_{0}-11}{\sqrt{2}}\right)^{2}
Méadaigh 1 agus 0 chun 0 a fháil.
x_{0}^{2}+2x_{0}-15=\left(\frac{-11-x_{0}}{\sqrt{2}}\right)^{2}
Dealaigh 11 ó 0 chun -11 a fháil.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2} chun ainmneoir \frac{-11-x_{0}}{\sqrt{2}} a thiontú in uimhir chóimheasta.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{2}\right)^{2}
Is é 2 uimhir chearnach \sqrt{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}}{2^{2}}
Chun \frac{\left(-11-x_{0}\right)\sqrt{2}}{2} a iolrú i gcumhacht, iolraigh an t-uimhreoir agus an t-ainmneoir araon i gcumhacht agus déan iad a roinnt ansin.
x_{0}^{2}+2x_{0}-15=\frac{\left(-11-x_{0}\right)^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Fairsingigh \left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(-11-x_{0}\right)^{2} a leathnú.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{2^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{4}
Ríomh cumhacht 2 de 2 agus faigh 4.
x_{0}^{2}+2x_{0}-15=\left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2}
Roinn \left(121+22x_{0}+x_{0}^{2}\right)\times 2 faoi 4 chun \left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2} a fháil.
x_{0}^{2}+2x_{0}-15=\frac{121}{2}+11x_{0}+\frac{1}{2}x_{0}^{2}
Úsáid an t-airí dáileach chun 121+22x_{0}+x_{0}^{2} a mhéadú faoi \frac{1}{2}.
x_{0}^{2}+2x_{0}-15-11x_{0}=\frac{121}{2}+\frac{1}{2}x_{0}^{2}
Bain 11x_{0} ón dá thaobh.
x_{0}^{2}-9x_{0}-15=\frac{121}{2}+\frac{1}{2}x_{0}^{2}
Comhcheangail 2x_{0} agus -11x_{0} chun -9x_{0} a fháil.
x_{0}^{2}-9x_{0}-15-\frac{1}{2}x_{0}^{2}=\frac{121}{2}
Bain \frac{1}{2}x_{0}^{2} ón dá thaobh.
\frac{1}{2}x_{0}^{2}-9x_{0}-15=\frac{121}{2}
Comhcheangail x_{0}^{2} agus -\frac{1}{2}x_{0}^{2} chun \frac{1}{2}x_{0}^{2} a fháil.
\frac{1}{2}x_{0}^{2}-9x_{0}=\frac{121}{2}+15
Cuir 15 leis an dá thaobh.
\frac{1}{2}x_{0}^{2}-9x_{0}=\frac{151}{2}
Suimigh \frac{121}{2} agus 15 chun \frac{151}{2} a fháil.
\frac{\frac{1}{2}x_{0}^{2}-9x_{0}}{\frac{1}{2}}=\frac{\frac{151}{2}}{\frac{1}{2}}
Iolraigh an dá thaobh faoi 2.
x_{0}^{2}+\left(-\frac{9}{\frac{1}{2}}\right)x_{0}=\frac{\frac{151}{2}}{\frac{1}{2}}
Má roinntear é faoi \frac{1}{2} cuirtear an iolrúchán faoi \frac{1}{2} ar ceal.
x_{0}^{2}-18x_{0}=\frac{\frac{151}{2}}{\frac{1}{2}}
Roinn -9 faoi \frac{1}{2} trí -9 a mhéadú faoi dheilín \frac{1}{2}.
x_{0}^{2}-18x_{0}=151
Roinn \frac{151}{2} faoi \frac{1}{2} trí \frac{151}{2} a mhéadú faoi dheilín \frac{1}{2}.
x_{0}^{2}-18x_{0}+\left(-9\right)^{2}=151+\left(-9\right)^{2}
Roinn -18, comhéifeacht an téarma x, faoi 2 chun -9 a fháil. Ansin suimigh uimhir chearnach -9 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x_{0}^{2}-18x_{0}+81=151+81
Cearnóg -9.
x_{0}^{2}-18x_{0}+81=232
Suimigh 151 le 81?
\left(x_{0}-9\right)^{2}=232
Fachtóirigh x_{0}^{2}-18x_{0}+81. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x_{0}-9\right)^{2}}=\sqrt{232}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x_{0}-9=2\sqrt{58} x_{0}-9=-2\sqrt{58}
Simpligh.
x_{0}=2\sqrt{58}+9 x_{0}=9-2\sqrt{58}
Cuir 9 leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}