Luacháil
-1+i
Fíorpháirt
-1
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Iolraigh uimhreoir agus ainmneoir \frac{1+i}{1-i} faoi chomhchuingeach coimpléascach an ainmneora, 1+i.
\left(\frac{2i}{2}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Déan iolrúcháin in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
i^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Roinn 2i faoi 2 chun i a fháil.
-1+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Ríomh cumhacht i de 6 agus faigh -1.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{3}+i\sqrt{2} chun ainmneoir \frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}} a thiontú in uimhir chóimheasta.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(-i\sqrt{2}\right)^{2}}
Mar shampla \left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\sqrt{2}\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\right)^{2}\left(\sqrt{2}\right)^{2}}
Fairsingigh \left(-i\sqrt{2}\right)^{2}
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-\left(\sqrt{2}\right)^{2}\right)}
Ríomh cumhacht -i de 2 agus faigh -1.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-2\right)}
Is é 2 uimhir chearnach \sqrt{2}.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3+2}
Méadaigh -1 agus -2 chun 2 a fháil.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{5}
Suimigh 3 agus 2 chun 5 a fháil.
-1+\frac{i\left(\sqrt{2}\right)^{2}+i\left(\sqrt{3}\right)^{2}}{5}
Úsáid an t-airí dáileach chun \sqrt{2}+i\sqrt{3} a mhéadú faoi \sqrt{3}+i\sqrt{2} agus chun téarmaí comhchosúla a chumasc.
-1+\frac{2i+i\left(\sqrt{3}\right)^{2}}{5}
Is é 2 uimhir chearnach \sqrt{2}.
-1+\frac{2i+3i}{5}
Is é 3 uimhir chearnach \sqrt{3}.
-1+\frac{5i}{5}
Suimigh 2i agus 3i chun 5i a fháil.
-1+i
Roinn 5i faoi 5 chun i a fháil.
Re(\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Iolraigh uimhreoir agus ainmneoir \frac{1+i}{1-i} faoi chomhchuingeach coimpléascach an ainmneora, 1+i.
Re(\left(\frac{2i}{2}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Déan iolrúcháin in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(i^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Roinn 2i faoi 2 chun i a fháil.
Re(-1+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Ríomh cumhacht i de 6 agus faigh -1.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right)})
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{3}+i\sqrt{2} chun ainmneoir \frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}} a thiontú in uimhir chóimheasta.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(-i\sqrt{2}\right)^{2}})
Mar shampla \left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\sqrt{2}\right)^{2}})
Is é 3 uimhir chearnach \sqrt{3}.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\right)^{2}\left(\sqrt{2}\right)^{2}})
Fairsingigh \left(-i\sqrt{2}\right)^{2}
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-\left(\sqrt{2}\right)^{2}\right)})
Ríomh cumhacht -i de 2 agus faigh -1.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-2\right)})
Is é 2 uimhir chearnach \sqrt{2}.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3+2})
Méadaigh -1 agus -2 chun 2 a fháil.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{5})
Suimigh 3 agus 2 chun 5 a fháil.
Re(-1+\frac{i\left(\sqrt{2}\right)^{2}+i\left(\sqrt{3}\right)^{2}}{5})
Úsáid an t-airí dáileach chun \sqrt{2}+i\sqrt{3} a mhéadú faoi \sqrt{3}+i\sqrt{2} agus chun téarmaí comhchosúla a chumasc.
Re(-1+\frac{2i+i\left(\sqrt{3}\right)^{2}}{5})
Is é 2 uimhir chearnach \sqrt{2}.
Re(-1+\frac{2i+3i}{5})
Is é 3 uimhir chearnach \sqrt{3}.
Re(-1+\frac{5i}{5})
Suimigh 2i agus 3i chun 5i a fháil.
Re(-1+i)
Roinn 5i faoi 5 chun i a fháil.
-1
Is é -1 fíorchuid -1+i.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}