Réitigh do α. (complex solution)
\alpha =\frac{2\left(\ln(\sigma _{x})+\ln(\frac{3}{2})\right)}{\ln(2)+\pi i}+\frac{2\pi n_{1}i}{\ln(2)+\pi i}
n_{1}\in \mathrm{Z}
\sigma _{x}\neq 0
Réitigh do σ_x. (complex solution)
\sigma _{x}=-\frac{2\left(-2\right)^{\frac{\alpha }{2}}}{3}
\sigma _{x}=\frac{2\left(-2\right)^{\frac{\alpha }{2}}}{3}
Réitigh do α.
\alpha =\frac{\ln(\sigma _{x}^{2})+\ln(\frac{9}{4})}{\ln(2)}
\sigma _{x}\neq 0\text{ and }Numerator(\frac{\ln(\sigma _{x}^{2})+2\ln(3)}{\ln(2)}-2)\text{bmod}2=0\text{ and }Denominator(\frac{\ln(\sigma _{x}^{2})+2\ln(3)}{\ln(2)})\text{bmod}2=1
Réitigh do σ_x.
\sigma _{x}=\frac{2\sqrt{\left(-2\right)^{\alpha }}}{3}
\sigma _{x}=-\frac{2\sqrt{\left(-2\right)^{\alpha }}}{3}\text{, }Denominator(\alpha )\text{bmod}2=1\text{ and }\left(-2\right)^{\alpha }\geq 0
Tráth na gCeist
\sigma _ { x } ^ { 2 } = ( - 2 - 0 ) ^ { \alpha } \times \frac { 4 } { 9 } + ( 0 \times 0 ) ^ { 2 } \times \frac { 3 } { 9 } + ( 1 \times 0 )
Roinn
Cóipeáladh go dtí an ghearrthaisce
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}