Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x-3y=3,2x+3y=6
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x-3y=3
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=3y+3
Cuir 3y leis an dá thaobh den chothromóid.
2\left(3y+3\right)+3y=6
Cuir x in aonad 3+3y sa chothromóid eile, 2x+3y=6.
6y+6+3y=6
Méadaigh 2 faoi 3+3y.
9y+6=6
Suimigh 6y le 3y?
9y=0
Bain 6 ón dá thaobh den chothromóid.
y=0
Roinn an dá thaobh faoi 9.
x=3
Cuir y in aonad 0 in x=3y+3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=3,y=0
Tá an córas réitithe anois.
x-3y=3,2x+3y=6
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 2\right)}&-\frac{-3}{3-\left(-3\times 2\right)}\\-\frac{2}{3-\left(-3\times 2\right)}&\frac{1}{3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 3+\frac{1}{3}\times 6\\-\frac{2}{9}\times 3+\frac{1}{9}\times 6\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Déan an uimhríocht.
x=3,y=0
Asbhain na heilimintí maitríse x agus y.
x-3y=3,2x+3y=6
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2x+2\left(-3\right)y=2\times 3,2x+3y=6
Chun x agus 2x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 2 agus gach téarma ar gach taobh den dara cothromóid faoi 1.
2x-6y=6,2x+3y=6
Simpligh.
2x-2x-6y-3y=6-6
Dealaigh 2x+3y=6 ó 2x-6y=6 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-6y-3y=6-6
Suimigh 2x le -2x? Cuirtear na téarmaí 2x agus -2x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-9y=6-6
Suimigh -6y le -3y?
-9y=0
Suimigh 6 le -6?
y=0
Roinn an dá thaobh faoi -9.
2x=6
Cuir y in aonad 0 in 2x+3y=6. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=3
Roinn an dá thaobh faoi 2.
x=3,y=0
Tá an córas réitithe anois.