Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

y+2x=7
Cuir an dara cothromóid san áireamh. Cuir 2x leis an dá thaobh.
x+2y=8,2x+y=7
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+2y=8
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-2y+8
Bain 2y ón dá thaobh den chothromóid.
2\left(-2y+8\right)+y=7
Cuir x in aonad -2y+8 sa chothromóid eile, 2x+y=7.
-4y+16+y=7
Méadaigh 2 faoi -2y+8.
-3y+16=7
Suimigh -4y le y?
-3y=-9
Bain 16 ón dá thaobh den chothromóid.
y=3
Roinn an dá thaobh faoi -3.
x=-2\times 3+8
Cuir y in aonad 3 in x=-2y+8. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-6+8
Méadaigh -2 faoi 3.
x=2
Suimigh 8 le -6?
x=2,y=3
Tá an córas réitithe anois.
y+2x=7
Cuir an dara cothromóid san áireamh. Cuir 2x leis an dá thaobh.
x+2y=8,2x+y=7
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\7\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\7\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&2\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\7\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\7\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 2}&-\frac{2}{1-2\times 2}\\-\frac{2}{1-2\times 2}&\frac{1}{1-2\times 2}\end{matrix}\right)\left(\begin{matrix}8\\7\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}8\\7\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 8+\frac{2}{3}\times 7\\\frac{2}{3}\times 8-\frac{1}{3}\times 7\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Déan an uimhríocht.
x=2,y=3
Asbhain na heilimintí maitríse x agus y.
y+2x=7
Cuir an dara cothromóid san áireamh. Cuir 2x leis an dá thaobh.
x+2y=8,2x+y=7
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2x+2\times 2y=2\times 8,2x+y=7
Chun x agus 2x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 2 agus gach téarma ar gach taobh den dara cothromóid faoi 1.
2x+4y=16,2x+y=7
Simpligh.
2x-2x+4y-y=16-7
Dealaigh 2x+y=7 ó 2x+4y=16 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
4y-y=16-7
Suimigh 2x le -2x? Cuirtear na téarmaí 2x agus -2x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
3y=16-7
Suimigh 4y le -y?
3y=9
Suimigh 16 le -7?
y=3
Roinn an dá thaobh faoi 3.
2x+3=7
Cuir y in aonad 3 in 2x+y=7. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
2x=4
Bain 3 ón dá thaobh den chothromóid.
x=2
Roinn an dá thaobh faoi 2.
x=2,y=3
Tá an córas réitithe anois.