Réitigh do x,y.
x=2
y=3
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left. \begin{array} { l } { 3 x - y = 3 } \\ { 7 x + 2 y = 20 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
3x-y=3,7x+2y=20
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x-y=3
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=y+3
Cuir y leis an dá thaobh den chothromóid.
x=\frac{1}{3}\left(y+3\right)
Roinn an dá thaobh faoi 3.
x=\frac{1}{3}y+1
Méadaigh \frac{1}{3} faoi y+3.
7\left(\frac{1}{3}y+1\right)+2y=20
Cuir x in aonad \frac{y}{3}+1 sa chothromóid eile, 7x+2y=20.
\frac{7}{3}y+7+2y=20
Méadaigh 7 faoi \frac{y}{3}+1.
\frac{13}{3}y+7=20
Suimigh \frac{7y}{3} le 2y?
\frac{13}{3}y=13
Bain 7 ón dá thaobh den chothromóid.
y=3
Roinn an dá thaobh den chothromóid faoi \frac{13}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{1}{3}\times 3+1
Cuir y in aonad 3 in x=\frac{1}{3}y+1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=1+1
Méadaigh \frac{1}{3} faoi 3.
x=2
Suimigh 1 le 1?
x=2,y=3
Tá an córas réitithe anois.
3x-y=3,7x+2y=20
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&-1\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\20\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3&-1\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&-1\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-7\right)}&-\frac{-1}{3\times 2-\left(-7\right)}\\-\frac{7}{3\times 2-\left(-7\right)}&\frac{3}{3\times 2-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\20\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\-\frac{7}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}3\\20\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 3+\frac{1}{13}\times 20\\-\frac{7}{13}\times 3+\frac{3}{13}\times 20\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Déan an uimhríocht.
x=2,y=3
Asbhain na heilimintí maitríse x agus y.
3x-y=3,7x+2y=20
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
7\times 3x+7\left(-1\right)y=7\times 3,3\times 7x+3\times 2y=3\times 20
Chun 3x agus 7x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 7 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
21x-7y=21,21x+6y=60
Simpligh.
21x-21x-7y-6y=21-60
Dealaigh 21x+6y=60 ó 21x-7y=21 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-7y-6y=21-60
Suimigh 21x le -21x? Cuirtear na téarmaí 21x agus -21x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-13y=21-60
Suimigh -7y le -6y?
-13y=-39
Suimigh 21 le -60?
y=3
Roinn an dá thaobh faoi -13.
7x+2\times 3=20
Cuir y in aonad 3 in 7x+2y=20. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
7x+6=20
Méadaigh 2 faoi 3.
7x=14
Bain 6 ón dá thaobh den chothromóid.
x=2
Roinn an dá thaobh faoi 7.
x=2,y=3
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}