Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x+3y=5,4x+3y=7
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x+3y=5
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=-3y+5
Bain 3y ón dá thaobh den chothromóid.
x=\frac{1}{2}\left(-3y+5\right)
Roinn an dá thaobh faoi 2.
x=-\frac{3}{2}y+\frac{5}{2}
Méadaigh \frac{1}{2} faoi -3y+5.
4\left(-\frac{3}{2}y+\frac{5}{2}\right)+3y=7
Cuir x in aonad \frac{-3y+5}{2} sa chothromóid eile, 4x+3y=7.
-6y+10+3y=7
Méadaigh 4 faoi \frac{-3y+5}{2}.
-3y+10=7
Suimigh -6y le 3y?
-3y=-3
Bain 10 ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh faoi -3.
x=\frac{-3+5}{2}
Cuir y in aonad 1 in x=-\frac{3}{2}y+\frac{5}{2}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=1
Suimigh \frac{5}{2} le -\frac{3}{2} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=1,y=1
Tá an córas réitithe anois.
2x+3y=5,4x+3y=7
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}2&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&3\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 4}&-\frac{3}{2\times 3-3\times 4}\\-\frac{4}{2\times 3-3\times 4}&\frac{2}{2\times 3-3\times 4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5+\frac{1}{2}\times 7\\\frac{2}{3}\times 5-\frac{1}{3}\times 7\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Déan an uimhríocht.
x=1,y=1
Asbhain na heilimintí maitríse x agus y.
2x+3y=5,4x+3y=7
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2x-4x+3y-3y=5-7
Dealaigh 4x+3y=7 ó 2x+3y=5 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
2x-4x=5-7
Suimigh 3y le -3y? Cuirtear na téarmaí 3y agus -3y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-2x=5-7
Suimigh 2x le -4x?
-2x=-2
Suimigh 5 le -7?
x=1
Roinn an dá thaobh faoi -2.
4+3y=7
Cuir x in aonad 1 in 4x+3y=7. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
3y=3
Bain 4 ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh faoi 3.
x=1,y=1
Tá an córas réitithe anois.