Réitigh do x.
x=tw
\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}\geq \frac{tw+\arcsin(\frac{1}{3})-2\pi }{2\pi }\text{ and }n_{1}\leq \frac{tw-\pi -\arcsin(\frac{1}{3})}{2\pi }\right)\text{ and }y=tw\text{ and }z=tw
Réitigh do z.
\left\{\begin{matrix}z=tw\text{, }&\left(x=tw\text{ and }y=tw\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}\geq \frac{tw+\arcsin(\frac{1}{3})-2\pi }{2\pi }\text{ and }n_{1}\leq \frac{tw-\pi -\arcsin(\frac{1}{3})}{2\pi }\right)\text{ and }t>0\right)\text{ or }\left(x=tw\text{ and }y=tw\text{ and }t<0\right)\\z=2\pi n_{1}+\pi +\arcsin(\frac{1}{3})\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}=-\frac{-tw+\pi +\arcsin(\frac{1}{3})}{2\pi }\text{, }&y=tw\text{ and }t\neq 0\end{matrix}\right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}