Scipeáil chuig an bpríomhábhar
Réitigh do y,x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

y-x=-3
Cuir an chéad cothromóid san áireamh. Bain x ón dá thaobh.
y-x=-3,y+2x=3
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
y-x=-3
Roghnaigh ceann de na cothromóidí agus réitigh é do y trí y ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
y=x-3
Cuir x leis an dá thaobh den chothromóid.
x-3+2x=3
Cuir y in aonad x-3 sa chothromóid eile, y+2x=3.
3x-3=3
Suimigh x le 2x?
3x=6
Cuir 3 leis an dá thaobh den chothromóid.
x=2
Roinn an dá thaobh faoi 3.
y=2-3
Cuir x in aonad 2 in y=x-3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=-1
Suimigh -3 le 2?
y=-1,x=2
Tá an córas réitithe anois.
y-x=-3
Cuir an chéad cothromóid san áireamh. Bain x ón dá thaobh.
y-x=-3,y+2x=3
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{1}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-3\right)+\frac{1}{3}\times 3\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\times 3\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Déan an uimhríocht.
y=-1,x=2
Asbhain na heilimintí maitríse y agus x.
y-x=-3
Cuir an chéad cothromóid san áireamh. Bain x ón dá thaobh.
y-x=-3,y+2x=3
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
y-y-x-2x=-3-3
Dealaigh y+2x=3 ó y-x=-3 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-x-2x=-3-3
Suimigh y le -y? Cuirtear na téarmaí y agus -y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-3x=-3-3
Suimigh -x le -2x?
-3x=-6
Suimigh -3 le -3?
x=2
Roinn an dá thaobh faoi -3.
y+2\times 2=3
Cuir x in aonad 2 in y+2x=3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y+4=3
Méadaigh 2 faoi 2.
y=-1
Bain 4 ón dá thaobh den chothromóid.
y=-1,x=2
Tá an córas réitithe anois.