Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x+3y=13,x-y=4
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x+3y=13
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=-3y+13
Bain 3y ón dá thaobh den chothromóid.
x=\frac{1}{2}\left(-3y+13\right)
Roinn an dá thaobh faoi 2.
x=-\frac{3}{2}y+\frac{13}{2}
Méadaigh \frac{1}{2} faoi -3y+13.
-\frac{3}{2}y+\frac{13}{2}-y=4
Cuir x in aonad \frac{-3y+13}{2} sa chothromóid eile, x-y=4.
-\frac{5}{2}y+\frac{13}{2}=4
Suimigh -\frac{3y}{2} le -y?
-\frac{5}{2}y=-\frac{5}{2}
Bain \frac{13}{2} ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh den chothromóid faoi -\frac{5}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{-3+13}{2}
Cuir y in aonad 1 in x=-\frac{3}{2}y+\frac{13}{2}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=5
Suimigh \frac{13}{2} le -\frac{3}{2} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=5,y=1
Tá an córas réitithe anois.
2x+3y=13,x-y=4
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\4\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&3\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{3}{2\left(-1\right)-3}\\-\frac{1}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}13\\4\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}13\\4\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 13+\frac{3}{5}\times 4\\\frac{1}{5}\times 13-\frac{2}{5}\times 4\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
Déan an uimhríocht.
x=5,y=1
Asbhain na heilimintí maitríse x agus y.
2x+3y=13,x-y=4
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2x+3y=13,2x+2\left(-1\right)y=2\times 4
Chun 2x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 2.
2x+3y=13,2x-2y=8
Simpligh.
2x-2x+3y+2y=13-8
Dealaigh 2x-2y=8 ó 2x+3y=13 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
3y+2y=13-8
Suimigh 2x le -2x? Cuirtear na téarmaí 2x agus -2x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
5y=13-8
Suimigh 3y le 2y?
5y=5
Suimigh 13 le -8?
y=1
Roinn an dá thaobh faoi 5.
x-1=4
Cuir y in aonad 1 in x-y=4. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=5
Cuir 1 leis an dá thaobh den chothromóid.
x=5,y=1
Tá an córas réitithe anois.