Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fachtóirigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

det(\left(\begin{matrix}4&2&1\\4&2&-2\\1&2&-2\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh na dtrasnán.
\left(\begin{matrix}4&2&1&4&2\\4&2&-2&4&2\\1&2&-2&1&2\end{matrix}\right)
Forbair an mhaitrís bhunaidh tríd an gcéad dá cholún a athdhéanamh mar an gceathrú agus an gcúigiú colún.
4\times 2\left(-2\right)+2\left(-2\right)+4\times 2=-12
Ag tosú ag an iontráil uachtair ar chlé, méadaigh síos feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
2+2\left(-2\right)\times 4-2\times 4\times 2=-30
Ag tosú ag an iontráil íochtair ar chlé, méadaigh suas feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
-12-\left(-30\right)
Dealaigh suim na dtorthaí trasnánacha suas ó shuim na dtorthaí trasnánacha síos.
18
Dealaigh -30 ó -12.
det(\left(\begin{matrix}4&2&1\\4&2&-2\\1&2&-2\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh an fhairsingithe de réir mionúr (ar a dtugtar forbairt de réir comhfhachtóirí chomh maith).
4det(\left(\begin{matrix}2&-2\\2&-2\end{matrix}\right))-2det(\left(\begin{matrix}4&-2\\1&-2\end{matrix}\right))+det(\left(\begin{matrix}4&2\\1&2\end{matrix}\right))
Le fairsingiú de réir mionúr, méadaigh gach eilimint den chéad sraith faoina mhionúr, arb é sin deitéarmanant na maitríse 2\times 2 a cruthaíodh tríd an ró agus an colún ina bhfuil an eilimint sin a scriosadh, agus ansin é a mhéadú faoi chomhartha suímh na heiliminte.
4\left(2\left(-2\right)-2\left(-2\right)\right)-2\left(4\left(-2\right)-\left(-2\right)\right)+4\times 2-2
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is ionann an deitéarmanant agus ad-bc.
-2\left(-6\right)+6
Simpligh.
18
Suimigh na téarmaí chun an toradh deiridh a fháil.